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I Supervised Learning

I.1 Learning a Function

Definition I.1.1. Function.

A function f : X 7→ Y maps inputs in its domain to a specific output in its range Y. ⌟

Computer scientists are concerned to construct functions with useful properties via algorithms, and the
fundamental problem in Machine Learning is learning a function given a set of input/output examples.

Setup I.1.2. Input and Output.

We let a set of n input examples (each taking k inputs) as:

[X] :=


X⃗1

X⃗2
...X⃗n

 =


x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...
xn1 xn2 · · · xnk

 ,

in which it is a k-by-n matrix (or a two dimensional array).
Y is a one dimensional output. ⌟

The goal of the learning is to learn an unknown function f : X⃗ 7→ Y.

Remark I.1.3. Assumptions of the Data.

The machine learning process needs to abide to the following assumptions:

(i) Examples in [X] are representative and not picked to try to foll us.
In particular, we want randomness to be drawn from the sample. Otherwise, it will introduce biases
into the model.

(ii) We have the access to true outputs, i.e., Yi = f (X⃗i).
True outputs are key in supervised learning, they are necessary to train the data.

(iii) A hypothesis class: H := { f̃ | f̃ : X⃗ 7→ Y}.
This is the set of all morphisms from the input to output. If f /∈ H, the function is outside the
hypothesis class. It is out of supervision for the learning. ⌟

Below is a simple example of learning a function with a decision tree.

I.2 Decision Tree

Decision trees are a special case for learning a function. In particular, it enforces the input and output to
endorse binary results. Inputs can be multi-dimensional, though.
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Example I.2.1. Defining Decision Trees.

Let input xij in X⃗i = (xi1, · · · , xik) be binary (0 or 1), and the output Y also binary.
Here,H is all possible decision trees, whereas decision trees can be represented as flow chart data structure
that decides on the output by sequentially considering question of input.

xi1 = 1?

yes no

xi2 = 1? y = 0

yes no

y = 1 y = 0

Figure I.1. Example of a binary decision tree.

Here, the size of H is |H| = 22k
, which is very big but finite. In reality, when Y is not finite, |H| can be

infinite. When Y = R, |H| is (uncountably) infinite, which is not possible to deal with. ⌟

In order to judge how well a tree does on [X] and [Y], we need to penalize f̃ ∈ H if it gets the output
wrong. Hence, we need a quantitative analysis method.

Definition I.2.2. Badness of a Prediction Function.

The loss function checks how well a function guesses on a particular input X⃗i with the actual output
Yi, and is denoted L

(
f̃ (X⃗i, Yi)

)
. The badness of a guess function f̃ , or the risk on data set [D], denoted

R[D]( f̃ ), is the sum of loss functions over the data set:

R[D]( f̃ ) =
1
n

n

∑
i=1

L
(

f̃ (X⃗i, Yi)
)
.

One way to penalize is to apply a penalty of 1 point when f̃ (X⃗i) 6= Yi, this is called a 0-1 loss function.
When using the 0-1 loss function, the badness of a function is:

R[D]( f̃ ) =
1
n

n

∑
i=1

1
(

f̃ (X⃗i) 6= Yi
)
,

where 1 is the indicator function. ⌟

The goal is to pick a good decision tree, that is minimizing the badness of the function f̃ . If we have
f̃1, f̃2 ∈ H such that R[D]( f̃1) < R[D]( f̃2), then f̃1 is better.

Remark I.2.3. Picking a Good Decision Tree is a Search Problem.

There are a lot of possible trees. Therefore, picking a good decision tree becomes a search problem.

• A lot of algorithms in Machine learning solve search problems.

• In general, the search problem is intractable, i.e., NP-hard, to find an element of H that minimizes
common measured of badness. The optimization theory searches for cleaver algorithms.

• In practice, greedy heuristics and local search methods are often used.
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These algorithms might not give the best result, but they are good enough for a problem. ⌟

To look for a good decision tree, we use the ID3 Algorithm, which is both local and greedy.

I.3 The ID3 Algorithm and Entropy of Data

To account for the efficiency, we want to know the quality of the data. Here, we use the definition from
information theory to quantify.

Definition I.3.1. Entropy.

Let [D] be a binary data set with outputs [Y], with #1Y
[D] denoting the number of Y that is 1, and #0Y

[D]

denoting the number of Y that is 0, the entropy of Y on data set [D] is:

H([D]) := −
#1Y

[D]

|[D]| log2

(
#1Y

[D]

|[D]|

)
−

#0Y
[D]

|[D]| log2

(
#0Y

[D]

|[D]|

)
. ⌟

Specifically, we can make [D] into conditional data set, i.e., selecting conditional data from [D].

Algorithm I.3.2. The ID3 Algorithm.

Let [D] represent the binary data set with input [Xj] and output [Y]. The algorithm lies as follows:

(i) Given a list of examples [D] := ([X], [Y]), for every variable Xj, we calculate the quality of Xj, that
is, how much easier it is to predict Y in each branch if we split on Xj.

quality of Xj = H([D])−
#0

Xj
[D]

|[D]|H([D|Xj = 0])−
#1

Xj
[D]

|[D]|H([D|Xj = 1]).

(ii) Then, we create the root of the tree and split on Xj with the highest quality.

(iii) Recursively repeat step (i) with the left and right branches using the subset of data where Xj = 1
and Xj = 0, that is, [D|Xj = 1] and [D|Xj = 0], respectively.

Eventually, we stop splitting at some point. ⌟

Here, we need to think of when to stop the decision tree. Here are some cases with the ID3 algorithm of
when to stop:

• If [D|Xi = xi, Xj = xj, · · · ] has all the same outcome values for Y, then we should stop splitting,
since what we have is as well as possible on the current subset of the data.

• If the remaining attributes [D|Xi = xi, Xj = xj, · · · ] all have the same values, then we should stop
splitting, since there is nothing left to split on.

• If there is no information gain for any potential split, we may need to keep going. We might want
to choose one attribute and go on for the split. Example: XOR is a half-half split.
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Remark I.3.3. Notes on the ID3 Algorithm.

• Decision trees can represent any functions from (x1, · · · , xk) to y, as it acts as a truth table.

• The ID3 search does not necessary minimize the 0-1 loss, but it tries to find trees with low 0-1 loss.

• During the ID3 construction, we need to choose the split with the most information gain.

• Different decisions trees could represent the same function.

• The ID3 search i snot perfectly accurate:

– If [D] has a lot of columns, it is unrealistic to contain them all.

– A good fit on the data does not imply combinations of input that are not seen.

– The true f might not be in H, necessarily, and this is a universal problem in Machine Learning.

In general, perfect accuracy is hopeless for the ID3 search. ⌟

Speaking of that, the data set is not including all input/output combinations, so there are biases included
as we train the model.

I.4 Inductive Bias and Overfitting

When picking simple trees, it might not capture the trends in the data set. However, when picking very
complicated trees, even if we have perfect accuracy we still have problems with it.

Here, at perfection, it is just regurgitating the data from inputs, but it might not account for the patterns
when there are no existing data.

Definition I.4.1. Inductive Bias.

The inductive bias of a learning algorithm is the set of assumptions that the learner uses to predict outputs
of given inputs that it has not encountered. It is on how we want to generalize our model. ⌟

In particular, when people train models, a common preference is to pick trees that are neither too simple
nor too complicated, and such selection is inductive bias, since it impacts on the data that are not encoun-
tered.

To check for inductive bias, we typically hold some data in [D] in reserve, and test them respectively.

Setup I.4.2. Training and Test Data.

The part of [D] that we show to the algorithm is the training data, denoted [D]train.
The part of [D] that we test the algorithm on is the test data, denoted [D]test. ⌟

The reservation of the test data allows us to verify if we have overfitting.
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Definition I.4.3. Overfitting.

For some f ∈ H, using the risk of training data, i.e., the average loss of f , we say f is overfitting if:

R[D]train
< R[D]. ⌟

For decision trees, the accuracy for both training and test data grows at first, where as the size of the tree
got larger, the accuracy on training data keep increasing while the accuracy on test data drops. This is
because the data is no longer representative.

Due to the nature of training, we would want to address the overfitting issue.

Remark I.4.4. Some Solutions to Overfitting.

Some possible deals with overfitting are:

(i) Try to stop splitting early when constructing the tree.
Terminating early would prevent the complicated model that remembers the input data.

(ii) Use another validation set [D]validation as a guide. These data are also unseen to the algorithm.
For example, we can merge two leaves where the resulting smallest tree yields the largest improve-
ment on [D]validation.

It is worth mentioning that no inductive bias will work on all problems well. ⌟

The above arguments are on overfitting, which is over the assumption that we have perfect data set and
unlimited computational power. The following issue account for the reality.

Example I.4.5. The Curse of Dimensionality.

As the number of features for X⃗ grows, the number of possible feature combinations grows exponentially
(2|X| for binary data, worse for discrete data, even worse for continuous data). The problem is that we
need exponentially growing amount of data and large trees to approximate the function.
In general, things get increasingly difficult as problem dimension increases. Some algorithms perform
poorly, and others stop working entirely. ⌟

This problem is a general phenomenon, it applies to other learning problem, and there is no simple solu-
tion. The typical solution is to put restrictions on H.

I.5 Generalization of Supervised Learning

The supervised learning can be extended to more cases from the binary decision tree.

• For discrete inputs and outputs, we use the same algorithm but do splits into more than 2 branches.

• For continuous inputs, we instead pick a threshold to split on. The feature is if it is larger than (<)
or no greater (≤) than the threshold.
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• For streaming inputs, there will be improvements on data with more data points, we learn a tree on
an initial [D], and then modify the tree as new examples come in.
This is an example of an online algorithm.

• For missing outcomes and features, this becomes a semi-supervised learning problem. It will be
difficult if the variables are missing systematically.
At larger, literature in statistics on missing data problems deals with this situation.

• For corrupted entries in [D], it becomes a measurement error problem. It will be very hard to deal
with.

• For adversarial or dependent entries in [D], often in a network, where the samples there are not
necessarily true. It will also be hard to deal with.

II Probability Theory

II.1 Preliminaries of Probability

Probability theory was first invented for analyzing games of chance. Later, it was applied to statistics/-
machine learning to address the inherent uncertainty about values.

Definition II.1.1. Random Variable.

Denotes X with values x ∈ X, a random variable represents outcomes that are random, whereas events
are when random variable X assumes value x, i.e., X = x. ⌟

We often use randomness to model our ignorance of information. In particular, we use probability to
encode uncertainty about events.

Definition II.1.2. Probability.

Probability are real numbers, and P(X = x) denotes the probability of event X = x. It abides to the
following Kolmogorov’s axiomatization of probability:

(i) 0 ≤ P(A) ≤ 1,

(ii) P(True, certain event) = 1,

(iii) P(False, impossible event) = 0, and

(iv) P(A or B) = P(A) + P(B)−P(A, B), where P(A, B) is the probability of both A and B. ⌟

We can always represent probability by Venn Diagrams, where event probabilities are represented by
areas. The entire area is 1 and areas cannot be less than zero.

Probability theory has a variety of properties from the axioms, and they are important to construct the
understanding of probability.
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Remark II.1.3. Important Results in Probability.

• The conditional probability of A given B is: P(A|B) = P(A, B)/P(B).

• A joint probability distribution describes probabilities for a set of mutually exclusive, exhaustive
events. These probabilities always sum to 1 and they partition the entire event space.
The joint distribution gives the probability of any event combination.

• For binary random variables A, B, we have:

P(A) = 1−P(¬A) and P(A) = P(A, B) + P(A,¬B).

• For discrete A, B of finite values, assume A has k values:

P(A = a1 or A = a2 or · · · or A = ak) =
k

∑
j=1

P(A = aj),

P(B) = P
(

B, (A = a1 or · · · or A = ak)
)
=

k

∑
j=1

P(B, A = aj),

k

∑
j=1

P(A = aj) = 1.

• Marginal probability: We can express marginal probability by sum of joint probability:

P(X1 = x1, · · · , Xm = xm) = ∑
xm+1,··· ,xk

P(X1 = x1, · · · , Xm = xm, Xm+1 = xm+1, · · · , Xk = xk).

Then, we can express the conditional probability by the joint and marginal probability:

P(X1 = x1, · · · , Xm = xm|Xm+1 = xm+1, · · · , Xk = xk) =
P(X1 = x1, · · · , Xk = xk)

P(Xm+1 = xm+1, · · · , Xk = xk)
,

which is equivalently P(A|B) = ∑C P(A, B, C)/ ∑C,A P(A, B, C). ⌟

Despite the effectiveness of probability theory, it exhibits certain problems implementation-wise.

• The joint distribution is very big, it grows exponentially, so it might not fit in a computer.

• It is hard to specify lots of probabilities from experts.

• It is hard to do the probabilistic calculations, such as summing exponentially many probabilities.

Alias, here are some additional rules that can account for the situation.

Algorithm II.1.4. Chain Rule and Bayes’ Rule.

The chain rule applies as:

P(X1, · · · , Xk) =
k

∏
i=1

P(Xi|Xi−1, · · · , X1).

The Bayes’ rule applies as:

P(A|B) = P(B|A) · P(A)

P(B)
. ⌟
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The chain rule uses the multiplications of conditional so it avoids the large joint distribution.

The Bayes’ rule allows us to easily manipulate the data, especially in the following circumstances.

• Bayes’ rule allows us to update our degree of belief in response to more evidence, and

• Bayes’ rule allows us to express hard to elicit probabilities in terms of easy to elicit ones.
There are cases when one direction is easier compared to the other direction.

II.2 Independence Relationship

Then, we discuss another tool to help, which is independence. It is an equality restriction on joint distri-
butions that encodes irrelevance.

Definition II.2.1. Marginally Independent.

Random variables A and B are marginally independent if:

P(A, B) = P(A) ·P(B).

It is written as Aq B. ⌟

More than marginally independent, there are also independence established on the conditional sense.

Definition II.2.2. Conditionally Independent.

Random variables A and B are conditionally independent given C if:P(A|B, C) = P(A|C),

P(B|A, C) = P(B|C),
or equivalently:

P(A, B|C) = P(A|C) ·P(B|C).

It is denoted as Aq B|C. ⌟

The conditional independence can be generalized to sets of variables in the same manner. Additionally, it
follows the below properties with events A, B, C, D:

• Symmetry: Aq B|C ⇐⇒ Bq A|C.

• Chain rule: Aq B ∪ D|C ⇐⇒ Aq D|C and Aq B|C ∪ D.

The independence is useful as it makes some probabilistic reasoning tractable.

Example II.2.3. Independence make Joint Distribution more Tractable.

When we have k binary variables X1, · · · , Xk, the size of the joint distribution is 2k − 1 (where the minus
1 is due to their sum is 1).
However, if every variable is marginally independent of the others, that is:

X1 q {X2, · · · , Xk}, X2 q {X3, · · · , Xk}, · · · , Xk−1 q Xk,
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we then have:

P(X1, X2, · · · , Xk) = P(X1) ·P(X2, · · · , Xk) = · · · = P(X1) ·P(X2) · · ·P(Xk),

and since every P(Xi) must sum to 1, so we need specify 1 probability for each i, summing to a total of
size k for the joint distribution, which is more tractable. ⌟

The independence of features becomes an important tool to combat with the curse of dimensionality.

Definition II.2.4. Expectation and Variance.

For a discrete random variable X, the expected value is the average weighted by probabilities:

E[X] :=
m

∑
i=1

xi ·P(X = xi) if X has m values.

The variance of X is then:
Var[X] = E

[
(X−E[X])2].

Although X is random, E[X] and Var[X] are fixed. ⌟

In particular, E[X] describes the average value of X and Var[X] describes the spread of X. These are
important concepts for random variables.

II.3 Real-Valued Distributions

Many features and outcomes in machine learning are real-valued, so we extend probability to real-valued
variables using density functions.

Setup II.3.1. Real-Valued Random Variables.

For a real-valued random variable X, the density function f (x) is defined to be:

f (x) := lim
h→0

P
(
X ∈ (x, x + h)

)
,

where f (x) is the limit of the probability that X has a value in a little line segment around every point.
For a set of real valued X⃗, we can define the joint density function f (x⃗) to be:

f (x⃗) = lim
h⃗→0

P
(
X⃗ ∈ (x⃗, x⃗ + h⃗)

)
.

Here, f (x⃗) becomes the limit of the probability X⃗ in a little hyper sphere around every point x⃗. ⌟

An important example of a real-valued random variable is the Gaussian distribution.

Definition II.3.2. Gaussian Distribution.

The density of the Gaussian distribution is:

f
(

x; {µ, σ2}
)
= N (µ, σ2) =

1√
2σ2π

exp
(
− (x− µ)2

2σ2

)
.

Here, X has density N (µ, σ2), with E[X] = µ and Var[X] = σ2. ⌟



M.L. Lecture Summary 10

A lot of the real-valued variables are approximately Gaussian, hence its applications are wide.

Remark II.3.3. Properties of Density Functions.

• Non-negativity: f (x⃗) ≥ 0.

• Normalization:
∫

f (x⃗)dx⃗ = 1.

• Positivity: although P(X⃗) ≤ 1, we may have f (x⃗) > 1. However, the area under f corresponding to
the line segments of the x-axis must be ≤ 1. ⌟

Additionally, most properties and concepts for probabilities carry over to density functions.

• We can joint densities: f (a, b), conditional densities: f (a|b) = f (a, b)/ f (b), and marginal densities:
f (a) :=

∫
f (a, b)db.

• Chain rule, Bayes’ rule, conditional independence hold similarly as for probabilities.

Definition II.3.4. Expectation and Variance.

For a real-valued variable X, the expected value is integral of values over its support measure:

E[X] :=
∫

x f (x)dx.

The variance of X is still:
Var[X] = E

[
(X−E[X])2]. ⌟

We also have a concept of covariance as a measure of joint variability of two variables:

Definition II.3.5. Covariance.

Let X and Y be random variables, then:

Cov[X, Y] = E
[
(X−E[X]) · (Y−E[Y])

]
.

⌟
If Cov[X, Y] = 0, then X and Y are uncorrelated, which is not the same independence, in general.

For the single random variable X, we have Var[X] = Cov[X, X].

Now, we discuss the conditional expectations, variances, and covariances. Let X, Y, Z be random variables,
then:

E[Y|X = x] :=

∑m
i=1 yi ·P(yi|x), if Y has m values,∫
y · f (y|x), if Y is real-valued.

Var[Y|X = x] := E
[
(Y−E[Y|X = x])2∣∣X = x

]
.

Cov[Y, Z|X = x] := E
[
(Y−E[Y|X = x]) · (Z−E[Z|X = x])

∣∣X = x
]
.

Again, we note that the above functions have fixed output even if the variables are random.
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II.4 Data as Samples

The supervised learning task is to learn a function f : X⃗ → Y from a data set with input [X] and output
[Y] of a function.

Setup II.4.1. Underlying Observed Data Distribution.

We postulate an underlying observed data distribution as P(x1, · · · , xk, y) with sample data elements:

[D] := ([X], [Y]) =


x11 x12 · · · x1k y1

x21 x22 · · · x2k y2
...

...
. . .

...
...

xn1 xn2 · · · xnk yn


⌟

Here our study is the ontological status of the distribution. There could be two different possibilities:

(i) P is the true distribution representing uncertainty in the underlying phenomena in the world.

• This view is more on the statistics, looking for the truth.

• Typically some aspects of p, such as single parameter like E[Y].

• Goal is to learn about the mapping from X1, · · · , Xk to Y from the data set [D].

• The true distribution, denoted p0, could naturally choose E[Y|X].

• The measure of success is the extent of recovering the truth.

(ii) P is an assumption of convenience, with is something good enough.

• Typically used in highly complex, high dimensional setting. It is unrealistic to get the truth.

• Often in machine learning and Bayesian statistics. It is not restrictive with assumption on p.

• The measure of success is the success in updating degrees of belief on Bayesian, or performance
on a task in Machine Learning.

Typically, we do not know the distribution exactly, we only have access to the samples.

Definition II.4.2. Models and Hypothesis Class.

We consider a set of possible distributions, and we want to find either P(x1, · · · , xk, y) itself or some part
of it (such as E[Y], E[Y|X], etc.). The set of distributions is called a statistical model.
If the set of distribution allows any distributions, the model is unrestricted or non-parametric saturated.
If the set of distributions has up to k finite parameters, the model is a parametric model of dimension k.
If the model is neither unrestricted nor parametric, it is semi-parametric. ⌟

For example, a parametric model of dimension 2 can be:{
f (x) =

1
2σ2π

exp
(
− (x− µ)2

2σ2

)
: for all µ, σ2

}
.

This distribution is the Gaussian distribution with mean and variance being the parameters.
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Now, we consider the model f : X⃗ 7→ Y with data [D]. If we are learning E[Y|X] from [D], then our hy-
pothesis class H degenerates to restrictions of E[Y|X⃗] with P(x⃗, y), which leads to semi-parametric model.

If our model is restricting p(Y|X⃗), then E[Y|X⃗] becomes a decision tree.

Setup II.4.3. Parametric Model.

Suppose we are learning f : X⃗ → Y and think of the function as E[Y|X⃗] from P(x⃗, y) with a parameter of
dimension k, we denote it as β⃗.
Then, we may denote our distribution with such parameter indexed in:

P(x⃗, y; β⃗).

In such case, we want to choose the best β⃗ using the existing data in [D]. ⌟

The process of using data to choose model parameters is called statistical inference. We now want a
evaluation function to tell us how surprised we are when seeing the data based on the current model.

II.5 Likelihood Function and Maximum Likelihood Equation

Our main goal is to have a likelihood function of seeing a particular row in data set [D] given the current
distribution model. Throughout the process, we assume that the rows in [D] were independently and
randomly drawn from the same distribution P(x1, · · · , xk, y), which is independently, identically distri-
butions (i.i.d.).

Definition II.5.1. Likelihood Function.

Given distribution P(x⃗, y; β⃗), the probability of seeing every row of [D], or the likelihood function, is:

L[D](β⃗) :=
n

∏
i=1

P(xi1, · · · , xik, yi; β⃗). ⌟

Note that we used a product since we assumed independent selections of samples, so if A q B, then
P(A, B) = P(A) ·P(B).

Basically, the likelihood function models the probability that we are seeing each row in [D] given the
parameter β, and we want to increase this number so we are as unsurprised as possible.

Remark II.5.2. Joint Distribution and Likelihood Function.

The joint distribution and likelihood function are different. Joint distribution is a function mapping X⃗
and Y to a real number, but the likelihood function maps the parameter value β to a real number with
fixed data points. ⌟

With such property, our goal is to maximize the likelihood function (less surprise) by manipulating the
values of β⃗. Here, we discuss the special case in which L(β⃗) is twice differentiable with respect to β⃗.
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Algorithm II.5.3. Second Derivative Test.

Suppose that L(β⃗) is twice differentiable with respect to β⃗. From second derivative test, we have:

• Whenever ∂L(β⃗)

∂β⃗
= 0, L(β⃗) has a critical point, i.e., local maximum, local minimum, or saddle point.

• Whenever ∂2L(β⃗)

∂β⃗2 < 0, the critical point is a maximum, i.e., L(β⃗) attains the maximum value. ⌟

Such strategy of find maximum likelihood is called a Likelihood Based Learning.

As an interlude, we recall the derivatives with respect to vectors in multivariable calculus.

Definition II.5.4. Gradient and Hessian Matrix.

Let f be a real-valued function that takes a vector input x⃗ of n entries, its gradient is defined as:

∇ f =
∂ f (x⃗)

∂x⃗
=


∂ f /∂x1

∂ f /∂x2
...

∂ f /∂xn

 .

Its second derivative, or the Hessian matrix is:

H f (x⃗) =
∂2 f (x⃗)

∂x⃗2 =


∂2 f /∂x2

1 ∂2 f /∂x1∂x2 · · · ∂2 f /∂x1∂xn

∂2 f /∂x2∂x1 ∂2 f /∂x2
2 · · · ∂2 f /∂x2∂xn

...
...

. . .
...

∂2 f /∂xn∂x1 ∂2 f /∂xn∂x2 · · · ∂2 f /∂x2
n

 .

⌟

When having doing the second derivative test with vector inputs, the maximum occurs when we have
the gradient being 0⃗, and the Hessian matrix is positive definite, i.e., all eigenvalues are negative.

To facilitate computation, we use the logarithm strategy. This is valid since log is a strictly monotonic
function, i.e., if L1 > L2, then log L1 > log L2 for any L1, L2 ∈ R.

Definition II.5.5. The Score Equation.

By introducing the logarithmic function, we can make the optimization problem into solving the following
score equation:

∂ logL[D](β⃗)

∂β⃗
= 0.

Then, we can also do the second derivative test for obtaining a maximum. ⌟

For simple models, we are able to solve the score equation in closed form. The solution to the score
equation is called the maximum likelihood estimate (MLE).
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Example II.5.6. Maximum Likelihood for Coin Flip.

Here, we let P(x; q) be a model containing a single binary variable X (0 for tails and 1 for heads), and
parameter q representing q := P(X = 1).
Here, we suppose a set of data of n coin flips as [D] = (x1, x2, · · · , xn).
Here, the log likelihood function is:

logL[D](q) = log
n

∏
i=1

qxi · (1− q)1−xi =
n

∑
i=1

(xi log q + (1− xi) log(1− q)) .

Here, we can take the derivative in closed form, that is:
∂ logL[D](q)

∂q
=

n

∑
i=1

(
xi
q
− 1− xi

1− q

)
=

n

∑
i=1

(
xi
q
− 1

1− q
+

xi
1− q

)
=

#1x
[D]

q
− n

1− q
+

#1x
[D]

1− q
= 0.

Therefore, we solve for q, which gives the maximum likelihood as:

q =
#1x

[D]

n
,

which is exactly the possibility of heads over the sample, which is reasonably the best distribution. ⌟

Note that the coin flipping example is very simple and has only one parameter. For the general cases, we
will experience many difficulties:

• In general, when there are many parameters, the closed form solutions will not exist.
In these cases, we need to think of iterative and local search methods.

• For the likelihood function, it might have many maximums, and the derivative methods can only
find local maximums, not identifying the global maximums.

Here, if we entirely believe the parametric model, we may use the maximized likelihood estimate to form
E[Y|X].

II.6 Bayesian Inference

Rather than just obtaining the true model, the Bayesian inference starts with an opinion, and then use
the data to revise the opinion systematically.

Setup II.6.1. Prior and Posterior Distribution.

The starting opinion is the prior distribution. It can be thought of as assigning probabilities to elements in
a statistical model. Here, we can have the model {P(x⃗, y; β⃗); β⃗}, which is a prior distribution of Pprior(β⃗)

over β⃗.
Given data [D] represented by likelihood function L[D](β⃗), we use Bayes’ rule to yield the posterior
distribution:

Pposterior(β⃗|[D]) =



L[D](β⃗) ·Pprior(β⃗)

∑β⃗
L[D](β⃗) ·Pprior(β)

, for a finite set of β⃗,

L[D](β⃗) ·Pprior(β⃗)∫
L[D](β⃗) ·Pprior(β)dβ⃗

, for an infinite set of β⃗, ⌟
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A Bayesian inference will generally return the posterior, which revises the opinion on how likely each
one is. However, for most problems, we want to particular discrete decision.

Algorithm II.6.2. Maximum a Posteriori.

The common principle to choose a model with parameters β⃗ is by maximum a posteriori (MAP), that is
the parameter that maximize the posterior:

arg maxβ Pposterior(β⃗|[D]). ⌟

In particular, if we calculate Pposterior(β⃗|[D]) explicitly, we can choose β⃗ by taking derivatives
∂Pposterior(β⃗|[D])

∂β⃗
.

When there are finitely many β⃗, we simply choose the one with the largest probability.

Remark II.6.3. Conjugate Priors.

Suppose that we are in infinitely many cases, the prior and posterior will both be density functions. Since
we are reusing posteriors as new priors, it would be helpful if both prior and posterior had the same form.
This is called conjugate prior, which examines the form of the distribution in likelihood. ⌟

Likewise, we can consider the example of flipping a coin as a conjugate prior.

Example II.6.4. Flipping a Coin with Conjugate Prior.

Suppose a coin X is flipped n times, in which the probability of head if q, i.e., P(X = 1) = q. Here, the
probability of having k heads is:

P(k) =
(

n
k

)
qk(1− q)n−k =

n!
k!(n− k)!

qk(1− q)n−k.

Therefore, the prior distribution, after normalization is:

Pprior(q) =
qα−1(1− q)β−1

B(α, β)
=

qα−1(1− q)β−1∫ 1
0 qα−1(1− q)β−1dq

.

Suppose that there are k heads and n− k tails, then the likelihood function is:

L[D](q) =
(

n
k

)
qk(1− q)n−k.

Hence, we then update the posterior, so we have:

Pposterior(q) =
L[D](q) ·Pprior(q)∫
L[D](q) ·Pprior(q)dq

=
qk+α−1(1− q)n−k+β−1

B(k + α, n− k + β)
.

By this update, it is assuming that we started with α− 1 heads and β− 1 tails. ⌟

Here, we also observe that the conjugate prior have one larger dimension compared to the likelihood
model. Conjugate prior works with many parametric models, thus allowing closed form calculation of
the posterior.

Of course, when the modeling has no close form, we can still grasp some data of the posterior, such as
EPposterior [Y], the median values, or even MAP values of β⃗.
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II.7 Gibbs Sampling

A powerful set of techniques is called Markov Chain Monte Carlo (MCMC), which is about drawing
samples from complex distributions that cannot be evaluated directly.

Setup II.7.1. Optimize Using Independence.

Suppose we have a set of random variables, if we have:

Xi q Xj1 , Xj2 , · · · , Xjm |Xk1 , Xk2 , · · · , Xkℓ ,

we can reduce the conditional distribution as:

P(xi|xj1 , · · · , xjm , xk1 , · · · , xkℓ) = P(xi|xj1 , · · · , xjm). ⌟

A more simple algorithm of MCMC is the Gibbs sampling, which draws samples from p(x1, · · · , xn).

Algorithm II.7.2. Gibbs Sampling Algorithm.

First, we initialize X1, · · · , Xn to arbitrary starting values x10, x20, · · · , xn0.
We repeat for i = 1, 2, · · · , s times, where we:

• Pick Xj in which we denote X−j as all other variables.

• Let xji be a sample from P(xj|x−j,i−1), where x−j,i−1 are the values of X−j at the previous step.

This above algorithm can be repeated for long enough so we get a sample from the joint distribution. ⌟

One advantage is that by accounting for independence, we can reduce the joint data size as 2n − 1 into
a smaller number as the sum of the conditionals. This prevents the model from getting into too high a
dimension.

Moreover, it is sometimes hard to represent the joint but the conditionals are easier.

Even when we do not have access to Pposterior(β⃗), as long as we know the ratio Pposterior(β⃗1)/Pposterior(β⃗2),
we can pick a proposal distribution Q(β⃗1|β⃗2), which is easier to work with. This is a more generalized
Metropolis-Hastings Algorithm. The Gibbs Sampling Algorithm is a special case of this.

III Regression Models, Selections, and Regularization

III.1 General Regression Models

The regression models are different from the learning function, we are trying to minimize the squared
loss function, that is E[

(
Y− f (X⃗)

)2
], and the minimum choice is the regression function E[Y|X⃗].

Overall, the model is semi-parametric, since there are no restrictions on p(x⃗), but we want the model to
be finitely monitored. Two special cases are linear regression for real-valued Y and logistic regression on
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binary Y.

Theorem III.1.1. Property of True Distribution.

Suppose P0 is the true distribution. Then, let SP(β⃗) denote the model score at P, that is:

SP(β) :=
∂ logLP(β⃗)

∂β⃗
.

The expectation of the score is zero, i.e.:

EP0 [SP0(β⃗0)] = 0.

Such result is a direct consequence of Leibniz integral rule and arithmetic manipulations. ⌟

Such property hold true only if we have the true P0, this underlies why solving the score equation for
MLE works. When we don’t have the true P0, we need to approximate it using empirical distributions.

The general class of regressions is embedded in the restricted moment model.

Definition III.1.2. Restricted Moment Model.

The restricted moment model is on P(X⃗, Y) such that E[Y|X] = g(X⃗; β⃗) is a fixed function. We define the
true result Y = g(X⃗; β⃗) + ϵ, where we restrict ϵ to be:

E[ϵ|X⃗; η⃗] = 0,

where ϵ is characterized as the disturbance, and η⃗ are some parameters that do not overlap with β⃗ that
we do not care about (called nuisance parameters). There could be as many of them. ⌟

III.2 Linear Regression Model

A special case is the linear regression.

Setup III.2.1. Linear Regression Model.

Here, we assume [D] has real-valued outcome Y. Moreover, the model assumes Y = g(x⃗, β⃗) + ϵ, where:

g(x⃗; β⃗) := β0 +
k

∑
j=1

xjβ j and ϵ ∼ N (0, σ2).

This model is known as a restricted moments model, since ϵ is independent of x⃗, so we have:

E[ϵ|X⃗] = E[ϵ] = 0. ⌟

Remark III.2.2. Likelihood of Linear Regression Model.

Here, the model likelihood is:

L[D](β⃗) =
n

∏
i=1

P(x⃗i) ·
1√

2σ2π
exp

− (yi − (β0 + ∑k
j=1 β jxij)

)2

2σ2

 .
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Moreover, we calculate the log likelihood as:

logL[D](β⃗) =
n

∑
i=1

log
P(x⃗i)√

2σ2π
+

n

∑
i=1

− (yi − (β0 + ∑k
j=1 β jxij)

)2

2σ2

 . ⌟

Recall that our goal is to maximize the log likelihood with respect to β⃗, which is equivalently minimizing

∑n
i=1
(
yi − (β0 + ∑k

j=1 β jxij)
)2.

To deal with β0, we add a columns of 1 to the left of [X], which yields [X̃], and the model is then:
y1
...

yn

 =


1 x11 · · · x1k
...

...
. . .

...
1 xn1 · · · xnk

 ·


β0
...

βk

+


ϵ1
...

ϵn

 ,

which is expressed as:
[Y] = [X̃] · β⃗ + ϵ⃗.

∈ ∈ ∈ ∈

Fn×1 Fk×(k+1) F(k+1)×1 Fn×1.

Then, we choose β⃗ to minimize:

([Y]− [X̃] · β⃗)⊺ · ([Y]− [X̃] · β⃗) = ϵ⃗⊺ · ϵ⃗ = ‖⃗ϵ‖2.

Here, we are minimizing the square error, which is nonnegative. In fact, we may find the closed form as:

([Y]− [X̃] · β⃗)⊺ · ([Y]− [X̃] · β⃗) = ([Y]⊺ − β⃗⊺ · [X̃]⊺) · ([Y]− [X̃] · β⃗)

= [Y]⊺[Y]− 2[Y]⊺[X̃]β⃗ + β⃗⊺[X̃]⊺[X̃]β⃗.

Here, we do the derivative with respect the β⃗ so we can solve for β⃗ as long as the inverses exists, which is:

0 = −2[X̃]⊺[Y] + 2[X̃]⊺[X]β⃗,

which is [X̃]⊺[X̃]β⃗ = [X̃]⊺[Y].

Proposition III.2.3. Optimal Parameter for Linear Regression.

The MLE for square error for linear regression is with:

β⃗ = ([X̃]⊺[X̃])−1[X̃]⊺[Y]. ⌟

Note that the linear regression is inherently a line, and we can technically achieve polynomial regressions
as well, which is higher order.

For example, we may trivially form the quadratic as:

Y = βint + β⃗XX + βX2 X⃗2.

Setup III.2.4. Polynomial Regression.

In terms of polynomial regression, we can add columns of X⃗2 vertically on our data, so the new matrix is:

X̃ =
(

X X2 · · ·
)

.

And the model is still a linear regression model. ⌟
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The above model seems to handle the case, but it incurs issues with interaction effects, i.e., we cannot
assume that X and X2 are independent, and they are in fact not independent.

Therefore, we want to have a simple modification to add the columns of the multiplication of data, so the
quadratic model becomes:

Y = βint + β⃗XX + βX2 X2 + βXX2 XX2 + ϵ.

In particular, this model can be generalized into any model with interacting factors.

Setup III.2.5. Regression Model with Interacting Factor.

Suppose X1 and X2 are factor with interactions, and let X1X2 denote the multiplication of the data, the
model becomes:

Y = βint + β⃗1X1 + β2X2 + β12X1X2 + ϵ.

Here, β1 and β2 are main effects, and β12 is the interaction effect. ⌟

In practice, the interaction effects are often smaller than the main effects, known as the sparsity of effects
principle.

The main concern is to build complex models with linear pieces, there are multiple ways of approaching
that:

(i) We may modify the input end by adding interesting or complicated features, such as interactions or
general pre-processing.
Hence, we will be able to craft complex surfaces by a piecewise linear model. The way of achieving
this is by having indicator features that corresponds to intervals over the x-axis.

(ii) On the output end, we may add non-line transformation, i.e., link functions.
For example, we can feed a linear function into an exponential, namely exp (βint + βXX).

(iii) Also, we can feed the output of one into the input of another, which is an application of the neural
network.

One specific non-linear transformation of a linear model is the sigmoid function.

III.3 Logistic Regression and the Newton-Raphson Method

For logistic regression, we use the sigmoid function to create the distribution. Here, we assume [D] has
binary outcome Y.

Definition III.3.1. Sigmoid Function.

The model assume that the probability of having 1 as output is:

P(Y = 1|X⃗; β⃗) =
1

1 + exp
[
−βint −

(
∑k

i=1 xi · βi

)] =
1

1 + exp
(
−∑k

i=0 xi · βi

) . ⌟
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Note that we are given a conditional expectation, it is a regression model.

Moreover, the model is restricted since we assume that E[ϵ|X] = 0.

Remark III.3.2. Likelihood Function.

Note that the likelihood function is:

L[D](β⃗) =

(
n

∏
i=1

P(x⃗i)

) ∏
i:y=1

1

1 + exp
(
−∑k

j=1 xi · β j

)
 ∏

i:yi=0

1− 1

1 + exp
(
−∑k

j=0 xi · β j

)
 .

Correspondingly, the log likelihood is:

logL[D](β⃗)

=
n

∑
i=1

log P(x⃗i) + ∑
i:yi=1

log

 1

1 + exp
(
−∑k

j=0 xi · β j

)
+ ∑

i:yi=0
log

1− 1

1 + exp
(
−∑k

j=0 xi · β j

)


=
n

∑
i=1

log P(x⃗i)− ∑
i:yi=1

log

[
1 + exp

(
−

k

∑
j=0

xi · β j

)]
+ ∑

i:yi=0
log

 exp
(
−∑k

j=0 xi · β j

)
1 + exp

(
−∑k

j=0 xi · β j

)
 .

⌟

Here, we are trying to maximize logL[D](β⃗), which is solving for zero for the derivative. We note that the
derivative with respect to each entry is:

∂ logL[D](β⃗)

∂β j
=

n

∑
i=1

xij ·
(
yi −P(yi = 1|x̃i; β⃗)

)
= 0.

Note that this equation is transcendental, so it cannot be solved in closed form. Thus, we move to itera-
tive methods using local search.

Here, we make the assumption of smooth function (C∞), in which we can apply the Taylor expansion.

Theorem III.3.3. The Taylor Expansion.

Let a function g(x) to be defined with all derivative at x0, i.e., g(x) ∈ C∞(x0), it may be written as an
infinite polynomial:

g(x) ∼
∞

∑
n=0

g(n)(x0)

n!
(x− x0)

n = g(x0) +
g′(x0)

1!
(x− x0) +

g′′(x0)

2!
(x− x0)

2 + · · · . ⌟

Such function is very useful as polynomials have nice behavior. Often g(x) could be complicated, but
approximating to the first few terms could be a good approximation. One application of the Taylor ex-
pansion is finding the root of a smooth function g(x).

Algorithm III.3.4. The Newton-Raphson Method.

Let g(x) be a function that is smooth, i.e., g(x) ∈ C∞(R). We denote x∗ to be such that g(x∗) = 0, which
is our goal of finding.

• We start with a guess x0, which is almost certain that g(x0) 6= 0.
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• Then, we form the Taylor expansion around x0 to approximate g(x) near x0:

g(x) ∼ g(x0) + g′(x0) · (x− x0) +
g′′(x0)

2
· (x− x0)

2 + · · · .

In particular, we can take the first two terms to approximate g(x) by:

g̃(x) = g(x0) + (x− x0) · g′(x0).

• Then, we hope that the root of g̃(x) will be a better guess than x0 for the root of g(x). We solve for
the root of g̃(x), that is:

x = x0 −
g(x0)

g′(x0)
.

Then, we repeat the above steps with x1, x2, · · · . If we have xi = x0 at step i, we stop the process, else we
stop as long as g(xi) ' 0. ⌟

With such the Newton-Raphson Method, we can apply it onto the process of maximizing logL[D](β⃗).

Here, we are looking for the root for
∂ logL[D](β⃗)

∂β⃗
.

In particular, the derivative
∂ logL[D](β⃗)

∂β⃗
is telling us the direction in which we need to update the guess ,

whereas 1
∂2 logL[D] (β⃗)

∂2βj

is telling us the magnitude of the step we need to take in the chosen direction. Hence,

such method updates the guess on the parameter using the derivative of the function that we are opti-
mizing.

Recall that we have define the equivalent of derivatives and second derivatives in multivariable calculus.
Hence, we can also use the Newton-Raphson Method to approximate the root.

Algorithm III.3.5. Newton-Raphson Method for Multivariable Case.

Here, we use H as the score function that we are trying to maximize, whose gradient is ∇h and Hessian
matrix is Hh, then we denote β⃗∗ as the prior guess, the updated guess is then:

β⃗ = β⃗∗ −Hh(β⃗∗)−1 · ∇h(β⃗∗).

Hence, it is the same process for multivariate variables:

(i) Make a guess with β⃗0, which is unlikely to be the root.

(ii) Update β⃗i from β⃗i−1 using the update rule, and

(iii) Stop when β⃗i and β⃗i+1 are sufficiently closed. ⌟

Just to note, the gradient for Multivariate Logistic Regression is:

∇h =
∂h(β⃗)

∂β⃗
=


∂h/∂β1

...
∂h/∂βk

 =


∑n

i=1 x⃗i1 ·
(
yi −P(yi = 1|x̃i; β⃗)

)
...

∑n
i=1 x⃗ik ·

(
yi −P(yi = 1|x̃i; β⃗)

)
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Likewise, the Hessian matrix is:

Hh(β⃗) =
∂2h(β⃗)

∂β⃗2
=


∂2h/∂x2

1 · · · ∂2h/∂x1∂βk
...

. . .
...

∂2h/∂xn∂x1 · · · ∂2h/∂β2
k



=


∑n

i=1 xi1xi1P(yi = 1|x̃i; β⃗)P(yi = 0|x̃i; β⃗) · · · ∑n
i=1 xi1xikP(yi = 1|x̃i; β⃗)P(yi = 0|x̃i; β⃗)

...
. . .

...

∑n
i=1 xikxi1P(yi = 1|x̃i; β⃗)P(yi = 0|x̃i; β⃗) · · · ∑n

i=1 xikxikP(yi = 1|x̃i; β⃗)P(yi = 0|x̃i; β⃗)

 .

Remark III.3.6. Limitations with Newton-Raphson Method.

The Newton-Raphson Method, at the same time it incurs the following limitations:

• Such methods are local, so it will only find a root of the score equation h.

• The result from the algorithm could be a maximum, minimum, or saddle point since the we only
had the first derivative as zero. Otherwise, we would need to do the second derivative test.

• Moreover, since the search is local, even if it is local maximum, it is not necessarily a global maxi-
mum.

Hence, the algorithm could find a very bad solutionm but there are no general solutions. ⌟

However, there are some tricks that could address for this.

Remark III.3.7. Properties for Convex and Concave Function.

A function g(x) is convex if for ay x1, x2 and 0 ≤ t ≤ 1, we have:

g
(
tx1 + (1− t)x2

)
≤ tg(x1) + (1− t)g(x2).

A function g(x) is concave if −g(x) is convex.

Figure III.1. Convex function (left) and concave function (right).

A concave function has a unique maximum and a convex function has a unique minimum. This makes
them nice to maximize or minimize, in particular for the local search process. ⌟

Some likelihood functions are convex, so it might not lead to a good local search. The logistic regression
likelihood is concave in every parameter, so it will work well.

III.4 Vapnik’s Principle and Loss Function

Previously, we have had the assumption that we have a parametric model on P(x1, · · · , xk, y; β⃗) and
L[D](β⃗). Consequently, we assume that minimizing square loss E[

(
Y− f (X⃗)

)2
] is the equivalent to learn-

ing E[Y|X⃗] by maximizing the likelihood in this case. However, it is unrealistic to expect a parametric
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likelihood.

At the same time, we conform to Vapnik’s Principle.

Proposition III.4.1. Vapnik’s Principle.

When solving a problem of interest, do not solve a more general problem as an intermediate step. ⌟

Hence, we want to think about function learning directly as a problem. Basically, our goal is:

Learn function f : X⃗ 7→ Y by minimizing a loss L
(
Y, f (X⃗)

)
.

Therefore, the main problem is how to pick a loss, and picking the right loss function is the key for
solving the problem.

For example, when we use the loss as |Y− f (X⃗)|, it is the conditional median models, which is robust to
the outliers, and we can think of other losses that are easier to work with. Some desirable properties are
differentiability, tractability to minimize, etc.

Now our problem becomes, what are possible loss functions that we shall use. Previously, we had the
square error

(
Y− f (X⃗)

)2, 0-1 loss, approximations, or negative log likelihood as a loss function. The loss
function is the key of telling how good the job the learning function does.

Remark III.4.2. Ability to Generalize for Model.

Moreover, we want to check how the learned function f̂ generalizes, i.e., how it does on data that it has
not seen before. ⌟

For any reasonable loss, there are infinitely many f̂ that minimize the average loss:

1
n

n

∑
i=1

L(Yi, f̂ (X⃗i)) on [D],

and they all generalize differently. Recall that we can have a almost zero model by simply remembering
all data [D]. Hence, the focus shall be how will they generalizes.

Remark III.4.3. Inductive Biases from Generalization.

Give our situation that there are infinitely many f̂ that minimize the average loss, inductive bias is a
choice among which possible f commits to dealing with unseen data in a particular way.
To see how effective the inductive bias choice is, we estimate the test error:

Errtest := E
P0(X⃗,Y)

[
L
(
Y, f̂ (X⃗)

)∣∣[D]
]
.

Here, [D] and f̂ are fixed, so the expectation is with respect to P(x⃗, y), which is the unseen instances of
the data. ⌟

Confusingly, we note that the test error is defined holding a particular set of new inputs x0, y0, and aver-
aging over possible [D] as an impact. To conduct such analysis, we use the mean squared error (MSE).
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Definition III.4.4. Mean Squared Error for Prediction.

Let f̂[D] be the predicted function with data [D], the definition of test error is the mean squared error, that
is:

MSE = (x⃗0, y0) = EP([D])

[(
y0 − f̂[D](x⃗0)

)2].
Recall that it is only evaluating the unseen data set. ⌟

The MSE tried to tell what might fo wrong when a function learner ha a specific goal (such as predicting
the ground truth y0) given different sorts of data.

Proposition III.4.5. Bias Variance Decomposition of MSE.

For a prediction model, two type of things can go wrong. We might be systematically wrong (bias) or we
might be paying attention to random noise in the data rather than a true patter (variance). Statistically,
we can decompose MSE as follows:

EP([D])

[(
y0 − f̂[D](x⃗0)

)2]
= Var[D]

[
f̂[D](x⃗0)

]︸ ︷︷ ︸
variance

+
(

EP([D])

[
y0 − f̂ + [D](x⃗0)

])2

︸ ︷︷ ︸
square bias

.
⌟

The proof involves quadratic formula, linearity of expectation, fixed y0, and Var(A) = E[A2]−E[A]. It is
omitted for its lengthiness.

In particular, the effective generalization to unseen data involves picking a hypothesis class that is flexible
but not too flexible. If we are not flexible enough, we will get excessive MSE due to bias, if we are too
flexible, we will get excessive MSE due to variance.

Recall the performance on training data is not effective at all for the nature that models can become (al-
most) perfect. Instead, we must estimate the measure the accuracy of generalization and minimize it by
making the trade off between bias and variance.

III.5 Function Learning and Optimism

Setup III.5.1. Process of Function Learning.

In describing a learning problem, it is typically in three distinct phases:

(i) Model selection: Make a trade off in model complexity, that is, use domain insights grounds, data,
or both as guides to select a model (and corresponding hypothesis class H).

(ii) Statistical inference: Given a model, we learn its parameters with data.

(iii) Test check: Given a learned element of the model that minimizes some objectives, we check how
well it does on unseen data. ⌟
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Especially when the amount of data is abundant, we split the data set into [D], the training set for step
(ii), [V], the validation set for step (i), and [T], the test set for step (iii).
When there are not so many data, we can combine [D] and [V] in the first two steps, what we end up with
is to penalize the flexibility of the model so we may obviate the need for [V].

For the last criterion, we measure the accuracy of generalization. In particular, a good estimation is:

Err := E[Errtest] = EP([D])

[
E

P0(X⃗,Y)

[
L
(
Y, f̂ (X⃗)

)∣∣[D]
]]

.

It seems that the natural choice is to use the error in [D]. However, it is not the case, since we cannot
use the same data for both training and testing data. It is trivial to construct functions that will perform
(almost) perfectly on the training data. However, most of them does not generalize well.

Moreover, we can develop a process to simultaneously process the generalization issues.

Definition III.5.2. In-Sample Error.

As a intermediate step, we define the in-sample error as:

Errin =
1
n

n

∑
i=1

E
[
L
(
y0

i , f̂ (x⃗i)
)∣∣[D]

]
.

In other words, we draw a new outcome from each x⃗i in [D] and compare it to the predicted output. ⌟

In this definition, we have Y0
i not necessarily identical with Yi in [D], and we consider Y0

i as random
quantities. Since x⃗i are fixed, the expectation is with respect to all Y0

i .

Definition III.5.3. Optimism of Data Set.

Therefore, we define the optimism at [D] as the difference between training error and in-sample error for
a particular training set [D]:

Op[D] := Errin − Errtrain =
1
n

n

∑
i=1

E
[
L
(
y0

i , f̂ (x⃗i)
)∣∣[D]

]
− 1

n

n

∑
i=1

L
(
yi, f̂ (x⃗i)

)
. ⌟

Optimism tries to quantify how much the model tries to take credit for the accident of seeing particular
yi for each x⃗i at every row (versus the other outcomes it could have seen).

In practice, it is much easier to estimate the average optimism, which averages over possible training sets
we may see:

ω := E[Op[D]] =
1
n

n

∑
i=1

E
[
E
[
L
(
y0

i , f̂ (x⃗i)
)∣∣[D]

]]
− 1

n

n

∑
i=1

L
(
yi, f̂ (x⃗i)

)
.

For this loss, we can represent it as the sum of covariance.

Proposition III.5.4. Average Optimism as Sum of Covariance.

The average optimism can be shown to be related as average of covariance of the prediction and truth:

ω =
2
n

n

∑
i=1

Cov
(

f̂ (xi), yi
)
.
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Hence, by having that:
E[Errin] = E[Errtrain] + E[Op[D]],

which leads to the conclusion that:
1
n

n

∑
i=1

EP([D])

[
E
[
L(Y0

i , f̂ (x⃗i))
∣∣[D]

]]
=

1
n

n

∑
i=1

L
(
yi, f̂ (x⃗i)

)
+

2
n

n

∑
i=1

Cov
(

f̂ (xi), yi
)
. ⌟

With such model, we may attempt estimate the in-sample error through the covariance.

Example III.5.5. Estimating Average Optimism and In-sample Error.

Suppose Y = f (X) + ϵ, where f (X) is a linear function with d inputs, we have:

n
2

ω =
n
2

E
[
Op[D]

]
=

n

∑
i=1

Cov
(

f̂ (xi), yi
)
= dσ2

ϵ := 2 Var(ϵ).

Therefore, we have:

E[Errin] = E[Errtrain] + 2 · d
2

σ2
ϵ . ⌟

If we are interested in a particular loss, we can select a model by minimizing the estimated in-sample error
as:

1
n

n

∑
i=1

L
(
yi, f̂ (x⃗i)

)
+ 2 · d

n
σ̂ϵ

2.

This can be thought of as modifying the loss by a factor having to do with the dimension of the model,
i.e., the number of parameters, d.

III.6 Information Criteria for Model Selection

The same idea applies to the negative log likelihood loss, which leads to the information criteria for
model selection.

Definition III.6.1. Information Criterion.

The Akaike information criterion is given by:

AIC = −2 logL[D](
ˆ⃗β) + 2 · d.

where ˆ⃗β is the maximum likelihood estimate.
Moreover, if we choose to choose complex penalty parameter d using the data adaptively, it yields:

AIC(α) = −2 logL[D](
ˆ⃗β) + 2d(α̂).

Likewise, we can define the Bayesian information criterion with different penalization weights.

BIC = −2 logL[D](
ˆ⃗β) + (log n) · d. ⌟

Here, BIC penalizes model dimension more heavily, i.e., by a log of the sample size. In particular, BIC
is motivated by Bayesian considerations, that is, it is proportional to a model posterior with a particular
simplicity prior.
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Moreover, BIC is consistent for model section, i.e., as sample size n→ ∞, it will select the true model from
a set as long as the set contains the truth.

Remark III.6.2. Generalizing Optimism.

Recall that closed form notation of optimism relied on the assumption that there is a fixed number of
parameters. It is not as easy to generalize the complex predictor models.

This measure is called the Vapnik-Chervonenkis dimension of a hypothesis class. ⌟

Therefore, we think of some ways that we can estimate test error. The easiest is by sample splitting.

Setup III.6.3. Cross-Validation for Estimating Test Error.

We partition [D] into k subsets of size n/k called folds. We train the model on all but the ith hold, to yield
f̂ (−i). There, we estimate the generalization treating all but ith fold as test error:

Erri =
1

n/k

n/k

∑
j=1

L
(
yj, f̂ (−i)(x⃗j)

)
where j ranges over rows of the ith fold.

The final estimate would be the average of all results, i.e.:

ˆErr =
1
k

k

∑
i=1

Erri. ⌟

Here, if we let k = n, ˆErr will be unbiased, since we consider the possibility of error for all missing rows.

However, we are adding up a lot of data points, and we are using most of the data each time to train. Since
most training sets will be similar (except for one point), so we are beholden to peculiarities of [D], i.e.,
having high variance. When k is relatively smaller, like k = 5, we are cutting down on the process of
training data. This would cause bias in the estimator and affect model performance since we have a lot
less training data.

The practical guidance suggest k = 5 to 10 for cross validation. But the essential point is that both model
selection and model training must be done in each fold, and cannot peek at the omitted fold.

On the other hand, we may tackle on the selection of features. In considering the maximizing the likeli-
hood, these methods could be biased due to model misspecification, and high variance due to too many
features being used.

Setup III.6.4. Feature Selection for Function Learning.

Imagine the true function with the form:

Y = β0 +
k

∑
i=1

βiXi + ϵ,

where βi are close to zero (or are small relative to the variance of Xi).
Such model may not do a great job in predicting Y, even if we have a linear model, it is too much impacted
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by the noise. In particular, we may not be table to tell apart the noise from the variability of Xi and the
signal of βi.
Here the strategy is to select a subset of features to use in the model. ⌟

Another reason for feature selection is model interpretability, a regression with less features is easier to
understand than a regression with a lot.

There is many ways that we can select a subset of the features.

(i) We can select by hand by taking the feedback from the experts (this is surprisingly often).

(ii) Alternatively, we use data for model selection.
This is a search problem as the number of subsets is exponential. at the same time, we need some
information criteria above on the training data.

• For modern computer, it is possible to do exhaustive search with a moderate set of features.

• Otherwise, we must use a linear search, often with greedy heuristics.

– Forward selection: Starts with a predictor that only uses an intercept, and sequentially
adds more features, one by one, which is the one with the most improvement.

– Backwards selection: Starts with a full model with all features, and sequentially removes
features that affect the criterion the least.

From another perspective, we can consider modifying the model by trading off bias and variance.

III.7 Regularization

Regularization or shrinkage is imposing a penalty to the loss that restricts model flexibility in some way.

Definition III.7.1. Regularization Term.

For the same model, we add a penalty term J(β⃗) to discourage the size and number of parameters for
some λ ≥ 0:

L
(
Y, f (X⃗, β⃗)

)
+ λJ(β⃗). ⌟

The method is similar to the motivation of Lagrange multiplier for restricting with additional condition.

Example III.7.2. Some Regularization Loss.

Following are some popular regularized loss terms:

• Rigid regression:
n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxij

)2

+ λ
k

∑
j=1

β2
j .

• The lasso:
n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxij

)2

+ λ
k

∑
j−1
|β j|.
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• Bayes prior:
n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxij

)2

+ λ
k

∑
j−1
|β j|q for q ≥ 0.

• Elastic net:
n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxij

)2

+ λ
k

∑
j−1

[
αβ2

j + (1− α)|β j|
]
.

⌟

In particular, the ridge regression may be solved in closed form for linear models, that is:
ˆ⃗β =

(
[X]⊺[X] + λ Id

)−1
[X]⊺[Y].

The other methods have no closed form solutions and thus would require methods such as quadratic
programming.

The regularization of parametric regression is very popular in very high dimensional problems, in par-
ticular in the p� n problems, where the number of features greatly exceeds the number of data points.
(The lasso would kill the extra parameters). In this case, the model is unlikely to work, so the models
must be restricted further or remain non-identified.

Remark III.7.3. Non-identified Data for Shrinkage.

Model parameters are non-identified from the observed data if different parameter settings can yield the
same observed data distribution.
There, no function from the observed data distribution to the parameters can exists.
Likewise, we say the model parameters as non-identified from the observed data if different parameter
settings can yield the same observed data. ⌟

Likewise, there are various regularization methods using shrinking.

Example III.7.4. Ways of Shrinking the Coefficients.

Here, we let λ be a constant in some shrinking processes:

• Best subset: β̂ j · 1(|β̂ j| ≥ |β̂min|), where β̂min is the smallest estimated coefficient among m subsets.

• Ridge: β̂ j/(1 + λ), which enforces a minimum coefficient value of 0, so this throws nothing away.

• Lasso: sgn(β̂ j) · (|β̂ j| − λ) · 1(|β̂ j| ≥ λ).

Figure III.2. Shrinking process for Best Subset (left), Ridge (middle), and Lasso (right). ⌟
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When comparing the regularization methods, for coefficients β1 and β2, we let β̂ to be the minimizer of
the squared loss, so for v > 0, the loss is:

(β1 − β̂1)
2

c1
+

(β2 − β̂2)
2

c2
= v,

which is a set of elliptical curves. The lasso constraint region uses |β1|+ |β2| < t, which is a square of
diamond. The ridge constraint region has β2

1 + β2
2 < t2 which is a ball at the center.

β1

β2

β̂

Figure III.3. The goal is to let the level curves of the loss function to intersect the boundary of the constraint region of

regularization terms.

IV Classification Problem

IV.1 Decision Boundary Problem

In regressions, we aim to study the loss from the function f : X⃗ 7→ Y. In classification, the natural loss
is 0-1, and the relevant hyperplanes partitions of the range of f into regions where inputs are mapped to
specific values of Y.

Definition IV.1.1. Decision Boundaries.

The borders, typically hyperplanes of manifolds, between the regions are called decision boundaries. ⌟

As long as we find all boundaries, we solve the classification problem. The concern is to find the optimal
way of doing so.

Setup IV.1.2. Using Decision Tree Model to Classify.

Say we have m classes y1, y2, · · · , ym. If we consider the truth as P(x⃗, y), then it may be possible for a set
of features x⃗j to produce different outcome labels, according to the probability P(y|x⃗j). ⌟
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Clearly, this case is working. However, we need to think of optimizing for the average and worst cases.

IV.2 Bayes Risk and Minimax Risk

First, we consider the risk, or expected loss for f̂ at a particular input x⃗ as:

E
[

L
(
Y, f̂ (x⃗)

)∣∣⃗x] .

Definition IV.2.1. The Bayes Risk.

For the average performance, we use the Bayes risk (Rb( f̂ )), which averages over possible inputs, and
distributions of inputs using a prior π:

Rb( f̂ ) = EP(x⃗)∼π

[
E[L

(
Y, f̂ (x⃗)

)
|⃗x]
]
= E

[
m

∑
i=1

L
(
Y = yi, f̂ (X⃗)

)
P(yi|X⃗)

]
.

Here, for the 0-1 loss, it is:
Rb( f̂ ) = E

[
1−P

(
f̂ (X⃗)|X⃗

)]
. ⌟

Definition IV.2.2. The Minimax Risk.

For the worst case performance, we use the minimax risk (R f ( f̂ )). For a predictor f̂ at x⃗j we have:

R f ( f̂ ) = sup
P(x⃗)

EP(x⃗)
[
L
(
Y, f̂ (x⃗)

)∣∣⃗x] = inf
f̂

sup
P(x⃗)

m

∑
i=1

L
(
Y = yi, f̂ (x⃗)big)P(yi |⃗x).

Likewise, for the 0-1 loss, it is:
R f ( f̂ ) = inf

f̂
sup
P(x⃗)

(
1−P( f̂ (x⃗)|⃗x)

)
. ⌟

In particular, the minimax risk will give the worst possible distribution over x⃗ for any m f̂ that is picked.
The job is to pick f̂ that minimizes how badly it performs.

IV.3 Classification Models

For the sake of this part, we use the Bayes risk. We want a classifier that minimizes Bayes risk chooses,
i.e., for every x⃗, the class yi that maximizes P(yi |⃗x). Such model is called the optimal Bayes classifier,
denoted f ∗.

Proposition IV.3.1. Optimal Bayes Classifier minimizes Bayes Risk.

Let f̃ be another classifier that picks a class in a different way than f ∗ for some x⃗i, and other otherwise
agrees with f ∗, then:

Rb( f ∗) ≤ Rb( f̃ ). ⌟

Here, the above result can be verified by having the following inequalities by dividing the Bayes risk into
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the parts in which the classifiers disagree and the parts in which the classifiers agrees:

Rb( f ∗) = E
[
1−P

(
f ∗(x⃗)|⃗x

)]
=
∫ (

1−P( f ∗(x⃗)|⃗x)
)
P(x⃗; θ)π(θ)dx⃗θ

=
∫ (

1−P( f ∗(x⃗)|⃗x)
)
P(x⃗; θ)π(θ) ·

(
1(x⃗ = x⃗i) + 1(x⃗ 6= x⃗i)

)
dx⃗θ

=
∫ (

1−P( f ∗(x⃗)|⃗x)
)
P(x⃗; θ)π(θ) · 1(x⃗ = x⃗i)dx⃗θ +

∫ (
1−P( f ∗(x⃗)|⃗x)

)
P(x⃗; θ)π(θ) · 1(x⃗ 6= x⃗i)dx⃗θ

≤
∫ (

1−P( f̃ (x⃗)|⃗x)
)
P(x⃗; θ)π(θ) · 1(x⃗ = x⃗i)dx⃗θ +

∫ (
1−P( f̃ (x⃗)|⃗x)

)
P(x⃗; θ)π(θ) · 1(x⃗ 6= x⃗i)dx⃗θ

= E
[
1−P

(
f̃ (x⃗)|⃗x

)]
= Rb( f̃ ).

Here, we note that f ∗ and f̃ agree anywhere x⃗ 6= x⃗i, so the second terms are equal. Moreover, it is not
possible to do better than f ∗, for average.

Here, it seems like that we have established the optimal solution for classification problem, all we need to
do is learn P(Y = yi |⃗x) for each i. However, we already know from regression problems to know that it
is hopeless to learn P(y|⃗x), or even E[y|⃗x]. Hence, we need to make inductive bias assumptions to make
progress.

• A classification of a point gives you information about classification of points around it.

• Decision boundaries have a simple form.

• Learn a discriminating function gi : X⃗ 7→ Y for each value yi of Y (hopefully in simple form), and
choose a class with highest values.

• Change the 0-1 loss into a simpler loss and minimize that instead.

From our experiences, the simplest and very important type of decision boundary is linear.

Remark IV.3.2. Generative versus Discriminative Models.

An important modeling choice when aiming to minimize Bayes risk is to have P(y|⃗x) as a discriminative
model or use P(y, x⃗) as a generative model.
For discriminative models, the advantages are:

• It assumes less things about P(x⃗, y), but only about P(y|⃗x), which is nothing with P(x⃗). Therefore,
it is more likely to be right.

• It is directly relevant for what we are doing (i.e., Vapnik’s principle).

For generative models, the advantages are:

• It has substantive assumptions, i.e., assumptions that work well in practice, which is sometimes
easier to phrase on P(x⃗, y).

• It does not ignore the fact about P(x⃗, y), which is not expressible when discussing P(y|⃗x). Such facts
should be exploited, not discarded. ⌟

Both generative models and discriminative models are effective models, and the arguing of which is
better is ongoing.
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IV.4 Linear Decision Boundaries

Recall that the simplest decision boundary is linear. Here, we have a point for one feature, a line for two
features, a plane with three features, and a hyperplane for more features.

Remark IV.4.1. Not All Boundaries will Work.

Not all boundaries will work to be the boundaries.
For some hyperplanes, they might not be able to separate the data via their feature.
In fact some data are not separable in the current dimension, such as XOR. ⌟

Hence, our main goal is to find the linear model from learning.

Setup IV.4.2. Learning a Linear Boundary.

With m values y1, · · · , ym of Y, we can learn m linear regression models, namely:

fi(x⃗) = βi0 +
K

∑
k=1

βik x⃗k,

with 1(Y = yi) as an outcome for i = 1, · · · , m.
Therefore, the boundary between yi and yj will be whenever f̂i(x⃗) = f̂ j(x⃗). Here, the linear discriminant
functions lead to a hyperplane:

{x⃗ : ( ˆβi0 − β j0) + (β̂i − β̂ j)
⊺ · x⃗ = 0}.

This setup is true for any pair of classes. Moreover, any monotone transformation of a linear discriminant
function will also lead to a linear decision boundary. ⌟

The linearity is preserved during monotone transformations.

Example IV.4.3. Decision Boundary for Logistic Regression.

We consider the logistic regression for two classes, namely:

P(Y = 1|⃗x) = exp(β0 + β⃗⊺ · x⃗)
1 + exp(β0 + β⃗⊺ · x⃗)

, P(Y = 0|⃗x) = 1

1 + exp(β0 + β⃗⊺ · x⃗)
.

Hence, this implies that:

log
P(Y = 1|⃗x)
P(Y = 0|⃗x) = β0 + β⃗⊺ · x⃗.

Here, log
(

p/(1− p)
)

is a monotone function, so it yields to the following decision boundary:

{x⃗ : β0 + β⃗⊺ = 0}. ⌟

It should be noted that linear boundaries can be transformed in a feature space. For example, we can add
square terms or interaction terms, such as X1 · X2 or X2

1 as added features.

Even if we do transformations, the boundary is still linear in the transformed feature space with respect
to the parameters.
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The fundamental idea is that the very complex transformation and still use linear methods.

IV.5 Multivariate Gaussian Distribution

A straightforward generalization exists for m classes y1, · · · , ym. Here, we have: We consider the logistic
regression for two classes, namely:

P(Y = 1|⃗x) = exp(β0 + β⃗⊺ · x⃗)
1 + exp(β0 + β⃗⊺ · x⃗)

, P(Y = 0|⃗x) = 1

1 + exp(β0 + β⃗⊺ · x⃗)
.

We may fit this by Newton-Raphson, as in the simple case where m = 2. We can show that the separation
is linear model, still.

Remark IV.5.1. Optimal Classification and Specification.

Optimal classification requires correct specification of P(Y|X⃗). Sometimes it is easier to achieve by mod-
eling P(Y) and simple model of P(X⃗|Y). This yields the Bayes rule, is:

P(Y|X⃗) =
P(Y)P(X⃗|Y)

∑y P(y)P(y)P(X⃗|Y = y)
. ⌟

Therefore, a useful method is the multivariate Gaussian distribution.

Definition IV.5.2. Multivariate Gaussian Distribution.

A multivariate normal distribution P(x⃗) with k variables X1, · · · , Xk has the form:

P(x⃗) =
1

(2π)k/2|Σ|1/2 exp
(
−1

2
(x⃗− µ⃗)⊺Σ−1(x⃗− µ⃗)

)
,

where µ⃗ is a vector of k means and Σ is a k-by-k covariance matrix, and |Σ| is the determinant of matrix
Σ. In particular, the covariant matrix is:

Σ :=


Var(X1) Cov(X1, X2) · · · Cov(X1, Xk)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xk)
...

...
. . .

...
Cov(Xk, X1) Cov(Xk, X2) · · · Var(Xk)

 .

⌟

Such distribution will induce a bell shaped curve in higher dimensions.

IV.6 Linear Discriminant Analysis and Quadratic Discriminant Analysis

Setup IV.6.1. Linear Discriminant Analysis.

In linear discriminant analysis (LDA), it assumes that:

P(Y|X⃗) =
P(Y)P(X⃗|Y)

∑yi
P(yi)P(X⃗|Y = yi)

P(X⃗|yi) =
1

(2π)k/2|Σ|1/2 exp
(
−1

2
(x⃗− µ⃗i)

⊺Σ−1(x⃗− µ⃗i)

)
.
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In other words, µ⃗i are class specific, but the covariant matrix Σ is the same shared across all classes. ⌟

Here, we note that this is a linear boundary because:

log
P(Y = y = yi |⃗x)

P(Y = ym |⃗x)
= log

P(yi)

P(ym)
+ log

P(x⃗|yi)

P(x⃗|ym)

= log
P(yi)

P(ym)
− 1

2
(µ⃗i + µ⃗m)

⊺Σ−1(µ⃗i − µ⃗m)︸ ︷︷ ︸
constant

+ x⃗⊺Σ−1(µ⃗i − µ⃗m)︸ ︷︷ ︸
linear in x⃗

.

Implementation-wise, we need to learn P(Y) and P(X⃗|Y = yi) for every yi.

Remark IV.6.2. MLE for LDA Setup.

Since P(Y) is just a discrete distribution, its MLE is #i/n, whichi s the number of times a class ovvurs
over the number of rows.
For P(X⃗|yi), it is class-specific, and we use the multivariate Gaussian, so it can be specified in closed
form:

ˆ⃗µi =
(

n−1
i ∑ni

j=1 x1j n−1
i ∑ni

j=1 x2j · · · n−1
i ∑ni

j=1 xkj

)⊺
,

Σ̂ = n−1
m

∑
i=1

ni

∑
j=1

(x⃗j − µ⃗i)(x⃗j − µ⃗i)
⊺/(n−m).

where ni is a yi-specified subset of [D], and j ranges over rows of that subset. ⌟

Note that the LDA setup gives the same decision boundary compared to logistic regression. However,
the LDA is a generative model, meaning it has assumptions on P(Y, X⃗), whereas logistic regression is
discriminative, since it has assumptions on P(Y|X⃗), where P(X⃗) is left unrestricted.

If the assumptions on joint holds, then LDA high higher efficiency (or reduced variance), but if the as-
sumption does not hold, it will gain more bias.

An alternative representation of the decision boundary in LDA is the class-specific discriminant function,
in which we evaluate this function per class and classify based on which function gives the largest output.

Setup IV.6.3. Quadratic Discriminant Analysis.

If we do not wish to assume Σ constant across classes, but each class yi has its own Σi, we end up with a
quadratic discriminant function instead:

1
2

log |Σi| −
1
2
(x⃗− µ⃗i)

⊺Σ−1(x⃗− µ⃗i) + log P(Y = yi).

⌟

When having LDA with quadratic features, we will see the non-linear boundaries, it is similar to using
QDA. Some differences are on the inductive biases of selecting the boundary for some points.

When we generalize the linear classifiers, we get the Naive Bayes, as there are many ways to impose on
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smoothness (LDA uses the multivariate Gaussian).

Setup IV.6.4. Naive Bayes.

A popular approach to achieve conditional independence is by naive Bayes, which assumes that:

Xi q X1, · · · , X̂i, · · · , Xk|Y for all Xi.

I.e., conditional on the outcome of all features are independent, which simplifies to:

P(X⃗|yi) =
k

∏
i=1

P(Xi|yi),

thus giving that:

P(yi|X⃗) =
P(yi)∏k

i=1 P(Xi|yi)}
∑yi

P(yi)∏k
i=1 P(Xi|yi)

. ⌟

Note that the assumption in which all features are independent is almost certainly no true in practice.
However, the setup allows many advantages:

• It is easy to incorporate discrete and real-valued features as well as missing values.

• It can fit model pieces P(yi) and P(xj|yi) separately, and since the models are univariate, it is more
efficient.

• The performance is quite good in practice.

Again, as we consider the decision boundary, we have:

log
P(yi |⃗x)
P(ym |⃗x)

= log
P(yi)

P(ym)︸ ︷︷ ︸
constant

+
k

∑
i=1

log
P(Xi|yi)

P(Xi|ym)︸ ︷︷ ︸
single feature transformations gim

.

Again, since P(Y) is discrete, we have the MLE being #i/n, and for P(X⃗|yi), we learn parameter of each
pieces altogether.
If Xi is discrete, the MLE is by counting values. If Xi is real valued, we postulate a univariate parametric
model and find its MLE.

IV.7 Perceptrons

In general, we can view the linear decision boundaries are a hyperplane of the form:

{x : β0 +
k

∑
i=1

βi · xi = 0},

where the decision is derived based on the sign of the outcome sgn(β0 + ∑k
i=1 βi · xi).

Remark IV.7.1. MLE Solution is Not Necessarily Perfect.

The MLE solution is not necessarily perfect separation, this is because that MLE does not account for 0-1
loss, hence it would be inclined to also minimize the furtherest squared distance. ⌟
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There are infinitely many choices for a decision boundary, the problem is on how to pick the best one.

Remark IV.7.2. Criterion of Good Decision Boundary.

We want to consider about the distance of points to classify the decision boundary.

• If there are misclassified points that are far away from boundary, we want it to be closer.

• If there are correctly classified points that is close to the boundary, we want to push the points away
from the boundary.

In either case, we want the distance to be appropriate for the classified points, correct or not. ⌟

One such algorithm developed to find the optimal decision boundary is by Rosenblatt’s Perceptron Al-
gorithm.

Algorithm IV.7.3. Rosenblatt’s Perceptron Algorithm.

Suppose we have a set of k features X⃗ and a binary outcome Y (with values 1 or −1). Suppose we have a
linear boundary that classifies all points perfectly, we use the decision rule that sgn(β0 + x⃗i

⊺ · β⃗).
Here, we define a generalized 0-1 loss to account for the concept of distance for the points:

L
(
yi, f̂ (x⃗i)

)
=

−yi · f̂ (x⃗i), if yi is misclassified,

0, if yi is correct,

where f̂ (x⃗i) = β0 + x⃗i
⊺ · β⃗. ⌟

The penalization is proportional to how far off the classifications are, so it will manage to optimize the
boundary when there are points that are misclassified.

Moreover, since it is a linear function, it is differentiable. Thus, we can minimize R[D]( f̂ ) := ∑n
i=1 L(yi, x⃗i),

and by taking the derivative, we have:

∂R[D]( f̂ )

∂β⃗
= − ∑

yi 6= f̂ (x⃗i)

yi x⃗i, and
∂R[D]( f̂ )

∂β0
= − ∑

yi 6= f̂ (x⃗i)

yi.

For the Perceptron, it is possible to do online learning, which is to accommodate the data one by one.

Algorithm IV.7.4. Newton-Raphson Algorithm in Perceptron / Gradient Descent.

We consider each step updates the parameter, using some step size ρ, we have the update rule as:(
β⃗

β0

)
←
(

β⃗

β0

)
+ ρ

(
∑yi 6= f̂ (x⃗i)

yi x⃗i

∑yi 6= f̂ (x⃗i)
yi

)
.

Here, the ρ is a step size or the learning rate. ⌟

Such algorithms can be better fitted to the Perceptron online learning, namely by having the stochastic
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gradient descent that updates only using the derivative at the current point we see, so it becomes:(
β⃗

β0

)
←
(

β⃗

β0

)
+ 1(yi 6= f̂ (x⃗i))ρ

(
yi x⃗i

yi

)
.

The perceptron algorithm is very simple and efficient.

Proposition IV.7.5. Existence of Solution =⇒ Finite Steps in Perceptron.

Suppose that we have a set of samples from P(x⃗, y) which gives either all at one, or one at a time, such
that there exists a linear decision boundary separating classes yi = 1 and yi = −1, the the perceptron
algorithm can find such boundary in finite number of steps. ⌟

At the same time, such algorithm is having some problems with its correspondence.

• Finite time is finite, but it could still be long. In particular, if the true gap between two points is very
small, then it could take very long to separate them.

• If there are linear boundaries, there are generally lots of them, and the algorithm can find different
ones by the order that the data were fed in.

• If there are no linear boundary, the algorithm will never terminate and go around, and this is hard
to determine in advance.

One way to address for this is maximizing the margin. The key idea is that:

If a point is classified as one type, perhaps the nearby points are also classified as the same type.

Therefore, we want to keep points as far away as possible, which leads to keeping the points as far away
from the boundary as possible.

Setup IV.7.6. Modified Rosenblatt’s Loss.

We are having M as the margin, and:

max
β⃗,β9,‖β⃗‖=1

M,

subject to yi(x⃗i
⊺ β⃗ + β0) ≥ M for all i = 1, · · · , n.

Meanwhile, we can normalize β⃗, and since the magnitude does not matter, we can let ‖β⃗‖ = 1/M, which
leads to:

min
β⃗,β0

1
2
‖β⃗‖2

subject to yi(x⃗i
⊺ β⃗ + β0) ≥ 1 for all i = 1, · · · , n. ⌟

IV.8 Constrained Optimization

Here, we are free to use the Lagrange method to solve for the constraint maximization or minimization,
that is:

Λ(β⃗, λ) := f (β⃗)− λg(β⃗).
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Checking on the stationary points correspond to the optima of the original problem with the Hessian:

H(Λ) =

 ∂2Λ
∂λ2

∂2Λ
∂λ∂β⃗(

∂2Λ
∂λ∂β⃗

)⊺
∂2Λ
∂β⃗2

 .

When there are more constrains, we can add more terms gi(β⃗) with more λi parameters.

Theorem IV.8.1. The Karush-Kuhn-Tucker Theorem.

Say we want to maximize f (β⃗) subject to g(β⃗) = 0 and h(β⃗) ≤ 0, we can rephrase the problem as finding
stationary points of the Lagrange function:

Λ(β⃗, λ, µ) := f (β⃗)− λg(β⃗)− µh(β⃗).

The following conditions should hold for such a point to solve the original problem:

• Stationarity: Derivatives of Λ with respect to β⃗ are 0.

• Primal feasibility: g(β⃗) = 0 and h(β⃗) ≤ 0.

• Dual feasibility: µ ≥ 0, and

• Complementary slackness: µh(β⃗) = 0. ⌟

Here, recall the optimization criterion as:

min
β⃗,β0

1
2
‖β⃗‖2

subject to yi(x⃗i
⊺ β⃗ + β0) ≥ 1 for all i = 1, · · · , n.

We may use Lagrange multiplier using the Karush-Kuhn-Tucker theirem as a primal minimization crite-
rion, that is:

LP :=
1
2
‖β⃗‖2 −

n

∑
i=1

αi
(
yi(x⃗i

⊺ β⃗ + β0)− 1
)
.

By setting the partial derivatives of LP as zero, we have:

β⃗ =
n

∑
i=1

αiyi x⃗i at
∂LP

∂β⃗
= 0,

n

∑
i=1

αiyi = 0 at
∂LP
∂β0

= 0.

As we substitute in the zero conditions, we have:

LP :=
1
2
‖β⃗‖2 −

n

∑
i=1

αi
(
yi(x⃗i

⊺ β⃗ + β0)− 1
)
,

and by adding the Karush-Kuhn-Tucker conditions, it leads to:

max LD =
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyj x⃗i
⊺ x⃗j,
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subject to

Dual feasibility: αi ≥ 0,

Partial derivative condition:
n

∑
i=1

αiyi = 0, and

Complementary slackness: αi
(
yi(x⃗i

⊺ β⃗ + β0)− 1
)
= 0 for all i.

Maximizing LD is the dual equivalent to minimizing LP, but is an easier convex optimization problem
using quadratic programming.

Remark IV.8.2. Notes on Dual Equivalence.

• Observed realizations x⃗ only enter into the problem as a k-by-k matrix x⃗⊺ x⃗, which allows us to easily
insert feature transformations.

• Primal parameters β⃗ match the number of features, but dual parameters α⃗ match the number of data
points. ⌟

With such considerations, we have address the issues with the issue that there could be more than 1
boundary, by finding the maximum margin separating the hyperplane.

IV.9 Support Vector Machine

Note that to find the margin, we are looking for the vectors that satisfies:

αi
(
yi(x⃗i

⊺ + β0)− 1
)
= 0,

and this is possible in only two ways: αi = 0, or
(
yi(x⃗i

⊺ + β0)− 1
)
= 0.

We shall want to focus on the second case, so the point x⃗i is exactly 1 away from the boundary, and so is
precisely on the margin. In the first case, it is further away.

Remark IV.9.1. Support Vectors.

Recall that β⃗ = ∑n
i=1 αiyi x⃗i, we see that only points x⃗i precisely on the margin have αi > 0, and are the

only ones that matter for finding β⃗. These vectors are called support vectors. ⌟

Now, our strategy is to accommodate for the slack variables.

If there are no hyperplane that can separate classes, we can assume that there are only a few outliers that
will lie on the wrong side of the boundary.

Setup IV.9.2. Slack Variables.

Here, we can define slack variables ξi for i = 1, · · · , n. Here, we allow some slack in having points lie
beyond the margin:

yi(x⃗i
⊺ β⃗ + β0) ≥ M(1− ξi),
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with ξi ≥ 0 and ∑n
i=1 ξi bounded by a constant C, which leads to the following minimization problem:

LP :=
1
2
‖β⃗‖2 + C

n

∑
i=1

ξi −
n

∑
i=1

αi
(
yi(x⃗i

⊺ β⃗ + β0)− (1− ξi)
)
−

n

∑
i=1

µiξi,

and we minimize this with respect to β⃗, β0, and ξi. ⌟

Similarly, we obtain the stationary point conditions, that is:

β⃗ =
n

∑
i=1

αiyi x⃗i, 0 =
n

∑
i=1

αiyi, αi = C− µi.

Thus, we can obtain the dual by substituting into the primal and adding the Karush-Kuhn-Tucker condi-
tions.

Algorithm IV.9.3. Dual Formulation with Slack Variable.

max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyj x⃗T
i x⃗j

subject to 0 ≤ αi ≤ C, i = 1, . . . , n
n

∑
i=1

αiyi = 0, and

αi
(
yi(x⃗i

⊺ β⃗ + β0)− (1− ξi)
)
= 0 and µiξi = 0 for all i. ⌟

As before, the solution has the form:

β =
n

∑
i=1

αiyi x⃗i, where αi ≥ 0.

Unlike before, some points will lie exactly on the margin (ξi = 0), and others will be misclassified or lie
within the margin (ξi > 0 and αi = C), the decision rule is still sgn(x⃗⊺ β⃗ + β0).

IV.10 Kernel Tricks

Up to now, we are assuming that the classification problem is almost linear. However, if the problem is
highly non-linear, the slack variable approach breaks down and leads to poor classification.

In addressing this, the two most natural ways are:

• We may expand the feature space, so the non-linear problem can become linear.
The explicit example of this is having polynomial terms and interactions in parametric regression
models.

• Otherwise, we consider that what enters the SVM clarifier is the inner product x⃗⊺ x⃗, which can be
replaced.
Here, the inner product is just:

K(x⃗1, x⃗2) = 〈x⃗1, x⃗2〉,

but we just need the output, so we can use another kernel as K(x⃗1, x⃗2).
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Example IV.10.1. Typical Kernels In Use.

There are a few kernels that are typically used.

• Linear Kernel (Default): K(x⃗1, x⃗2) = 〈x⃗1, x⃗2〉,

• Degree d Polynomial: K(x⃗1, x⃗2) = (1 + 〈x⃗1, x⃗2〉)d,

• Radial Basis: K(x⃗1, x⃗2) = exp(−γ‖x⃗1 − x⃗2‖2),

• Neural Network Activation: K(x⃗1, x⃗2) = tanh(κ1〈x⃗1, x⃗2〉+ κ2). ⌟

In fact, with a proper inner product, the number of m does not need to be finite, which generalizes to a
infinite dimension Hilbert space (H).

Here, we note that the SVM is minimizing the hinge loss.

Proposition IV.10.2. SVM Minimizes the Hinge Loss.

The SVM algorithm is equivalent to:

min
β⃗,β0

n

∑
i=1

max
((

1− yi(h(x⃗)⊺ β⃗ + β0)
)
, 0
)
+

λ

2
‖β⃗‖2,

which is known as the hinge loss. ⌟

The other classifications uses different types of losses:

Classifier Loss Loss Expression Minimizing Function of P(x⃗, y)
optimal Bayes 0-1 1

(
y = f (x⃗)

)
f (x) = P(y|⃗x)

logistic regression deviance log(1 + e−y f (x⃗)) f (x) = log P(y=+1|⃗x)
P(y=−1|⃗x)

SVM hinge max(1− y f (x⃗), 0) f (x) = sgn
(
P(y = 1|⃗x)− 1

2
)

LDA squared
(
y− f (x⃗)

)2
=
(
1− f (x⃗)

)2 f (x) = 2P(y = 1|⃗x)− 1
AdaBoost exponential exp

(
− y f (x⃗)

)
The graphs of the loss can be shown as follows.

deviation

Loss

Figure IV.1. Loss functions for 0-1(red), hinge(blue), squared(green), and exponential(orange). Deviance similar to exponential.

V Ensemble Methods

Ensemble methods aim to combine multiple predictors to achieve better performance than each individ-
ual predictor could on its own.
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V.1 Bootstrap and Bagging

Bootstrap aggregating improves the predictions in high variance, low bias data set. It is a general method
for assessing reliability of a procedure that uses data.

Setup V.1.1. Bootstrap Assessment.

Let P(x⃗, y) be an observed data distribution, and [D] be a data set of independent samples from this
distribution. We want to assess any function g : [D] 7→ θ̂.
Ideally, we want to give g lots of datasets drawn from P(x⃗, y). However, we do not have access to P(x⃗, y).
⌟

To account for the loss of full distribution, we assign the data that do not appear with measure 0, hence,
we can develop a pick without replacements.

Algorithm V.1.2. Bootstrap Approach.

(i) Sample with m datasets [D]1, · · · , [D]m of the same size as [D] by sampling rows of [D] with re-
placement.

(ii) Then calculate θ̂1 = g([D]1), · · · , ˆθm = g([D]m).

(iii) Use the above step to calculate anything involving the distribution of g([D]) for [D] ∼ P(x⃗, y). ⌟

Although we do not have access to P(x⃗, y), we can view the original data set [D] as an approximation of
P(x⃗, y).
Hence, instead of sampling from P(x⃗, y), we sample from [D], and this is often used to calculate confi-
dence intervals, as being used to assess uncertainty in parameter estimation due to sampling variability
in [D].

Moreover, bootstrap is an alternative to cross-validation to estimate generalization error.

Example V.1.3. Bootstrap Aggregating with Regression.

We consider the regression problem first. Instead of using predictor f̂ learned by a function g that uses
[D], we use:

f̂bag(x⃗) :=
1
m

m

∑
i=1

f̂i(x⃗),

where we use [D]i, the i-th bootstrap dataset to train f̂i := g([D]i). ⌟

With the above example, we take the majority vote for classification. Here, we want to analyze if bagging
helps.
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Remark V.1.4. Notes on Classification and Regression of Bagging.

In terms of classification, we note that:

• Instead of sampling [D]1, · · · , [D]m from [D], we sampled from P(x⃗, y) directly.

• If all [D]i are independent, so are the learners f̂i = g([D]i).

• If each learner has an error probability of 0.5− ϵ, then the majority vote have error probability → 0
as m→ ∞, which is known as the wisdom of the crowds effect.

• The key is that the learners have to be independent. If we sample [D]i from [D]m they are not
independent.

In terms of regression, we note that:

• Suppose we are doing a regression with a squared loss E
[
Y −

(
f̂[D](x⃗)

)2]. Consider an idealized
bagging regression model that averages over all datasets [D] drawn from P(x⃗, y):

fbag(x⃗) := E[D]∼P(x⃗,y)
[

f̂[D](x⃗)
]
.

• Then, we have the expectation of squared loss such that:

E
[(

Y− f̂[D](x⃗)
)2]

= E
[(

Y− fbag(x⃗)
)2]

+ 2E
[(

Y− fbag(x⃗)
)(

fbag(x⃗)− f̂[D](x⃗)
)]︸ ︷︷ ︸

0

+E
[(

f̂[D](x⃗)− fbag(x⃗)
)2]

≥ E
[(

Y− fbag(x⃗)
)2].

Therefore, the aggregation process does not increase the mean square error, and would often de-
crease it by reducing the variance.

Although these arguments do not necessarily carry over to sampling from [D], the bagging has found to
help in [D] with low bias but high variance. ⌟

V.2 Super Learner

Super Learner uses cross-validation to create as combined learner that does as well as the best learner in
an ensemble.

The basic idea of super learner is the weighted combination of learners that are trained differently. The
process lies as follows.

Algorithm V.2.1. Super Learner Training.

Our problem is to have a regression model, minimizing E
[
L
(
Y, f̂ (X⃗)

)]
by choosing parameters of f̂ (x⃗)

using [D] of size N.
Additionally, we assume that we have a library of functions f1, · · · , fM of possible predictors, and we want
to combine them in a useful way, which is by cross-validation.
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(i) Fit each f̂1,[D], · · · , f̂M,[D] using all of [D].

(ii) Split [D] into training [T]k and validation [V]k for k = 1, · · · , K pieces using K-fold cross validation.

(iii) For each 1, · · · , K fold, fit each f1, · · · , fM using [T]k, and save the predictions on [V]k.

(iv) Create a N × M matrix of validation predictions, where each ˆfkm is the mth learner trained using
[T]k. We use ˆfkm to predict [V]k.

(v) Consider a weighted average of all predictors:

f ∗k,α̂(x⃗) :=
M

∑
m=1

αm ˆfkm(x⃗)

for every validation region [V]k in [D], where ∑M
m=1 αm = 1.

(vi) Then, we choose ˆ⃗α to minimize ∑N
i=1
(
yi − f ∗α⃗ (x⃗i)

)2.

With all of above, we can create a final predictor:

fsl(x⃗) =
M

∑
m=1

α̂m ˆfm, [D](x⃗). ⌟

The super learner algorithm is quite involved, and it is computationally challenging.

Proposition V.2.2. Super Learner as Best Possibly Weight Combination.

The super learner does as well as the best possibly weighted combination in L as N → ∞.
I.e., if L contains the true E[Y|X⃗], then super learner will do as well as if we used that. ⌟

Super learner will add the technological distinctiveness of predictor to its own.

Remark V.2.3. Practical Problem with Super Learner.

However, the super learner has a few practical problems:

• Every predictor in L must run on [D] and [T], and the different implementations have different
requirements in practice.

• It might not be able to have good properties at the available sample size.

• The weighted predictor might not run on [D] in practice.
For example, a weighted combination of parametric linear models may lead to a non-invertible
design matrix [X]⊺[X]. ⌟

V.3 Random Forests

Random Forest combines small decision trees into a high performance learner. It leads to a random forest
family of models.
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Algorithm V.3.1. Random Forest Algorithm.

For b = 1, · · · , B, we do:

(i) Draw a bootstrap dataset [D]b by sampling rows with replacement from [D].

(ii) Learn a tree Tb using [D]b as follows:

• Pick a subset of variables S⃗ ⊂ v (which are columns in [D]b),

• Pick the best split variable in MS⃗ (such as via IDS heuristic),

• Split the tree, create two split datasets, and recurse until at a stopping criterion.

(iii) For regressions, we have output:

f̂rf =
1
B

B

∑
b=1

Tb(x⃗).

For classification model, we have output as majority vote among Tb(x⃗). ⌟

If the subsets S⃗ are correlated, variance reduction by averaging over Tb will be limited by the extent of
correlation. Hence, we may pick variables up randomly at step (ii).

There area various other types of random forests based on different principles.

Example V.3.2. Bayesian Auto-Regressive Trees.

The Bayesian auto-regression trees (BART) use Gibbs sampling to generate posterior samples (sample 1
tree out of 200 given the others are fixed). Prior favors small trees. ⌟

There is no clear idea why random forests work so well. Roughly, trees are a high variance estimator,
and bagging is a variance reduction method in some cases, hence they fir well.

V.4 Boosting and AdaBoost

Boosting combines weak learners into a strong learner.

Remark V.4.1. Weak Learners should be Better than Guessing.

Boosting improves weak classifiers (probability of correct classification is 0.5 + ϵ) to yield a strong classi-
fier. It works by recursively challenging with the part of the data where the classifier constructed so far is
not doing well. ⌟

The idea of boosting is from the proposition about the learners.

Proposition V.4.2. Existence of Learners.

Given a random example from an unknown, arbitrary P(x⃗, y):
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(i) There exists a strong probably approximately correct (PAC) learner means for any distribution, with
high probability, given a polynomial sized data set and polynomial times, we can create a classifier
with arbitrarily small generalization error.

(ii) There exists a weak probably approximately correct (PAC) leaner means the same condition above,
but classifiers only does slightly better than random guessing. ⌟

It is clear that the (ii) is easier to approach than (i), but we want to achieve (i).

The existence of a boosting algorithms that shows (ii) implies (i) was by Schapire in 1989, and the first
practical and effective algorithm was AdaBoost by Freund and Shapire in 1995.

Algorithm V.4.3. AdaBoost.

For t = 1, · · · , T, we do:

(i) Construct a distribution Pt,[D] from [D].

(ii) Find a classifier ft : x⃗ 7→ y ∈ {−1, 1} with small error ϵt on instances from Pt,[D].

Eventually, we construct the final classifier ffinal from ft (where t = 1, · · · , T). ⌟

When constructing Pt,[D], we have:

• All distributions will be re-weighted versions of the empirical distribution given by [D].

• For the ith row, we have P1,[D](x⃗i, yi) = 1/n.

• For the ith row, we update the distribution as:

Pt+1,[D] =
Pt,[D](x⃗i, yi)

Zt
· exp (−αtyi ft(x⃗i)) ,

which is add more weights to the incorrect prediction and normalize all.

• In particular, we want Zt to be the normalizing constant. As long as the algorithm is running:

αt =
1
2

log
(

1− ϵt

ϵt

)
> 0.

When it is exactly 0, the update stops, and when it is less than 0, AdaBoost behaves incorrectly.

In particular, the final classifier is:

ffinal(x⃗) = sgn

(
T

∑
t=1

αt ft(x⃗)

)
.

Remark V.4.4. Training Error for AdaBoost.

Let ϵt = 0.5− γt, we can show that:
n

∑
i=1

L
(
yi, ffinal(x⃗i)

)
≤

T

∏
t=1

2
√

ϵt(1− ϵt) =
T

∏
t=1

√
1− 4γ2

t ≤ exp

(
−2

T

∑
t=1

γ2
t

)
.

Hence, if all γt are positive and bounded below by a small constant γ, we have the sum of the loss
bounded above by exp(−2γ2T), which gets exponentially small. ⌟
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Typically, having the training error converges to zero is well but the real test might fails to generalize due
to overfitting.

Remark V.4.5. AdaBoost has Less Impact from Overfitting.

For AdaBoost, it minimizes the exponential loss, i.e.:

L
(
y, f (x⃗)

)
= exp

(
− y f (x⃗)

)
.

The minimizer of this loss is:

f ∗(x⃗) =
1
2

log
P(y = 1|⃗x)

P(y = −1)|⃗x or P(y = 1|⃗x) = 1
1 + exp (−2 f ∗(x⃗))

.

For exponential loss in particular, the model still penalizes after being classified to the correct side. The
model need to push the boundary far away from the boundary in order to have a smaller loss, hence it
enforces the model to improve even if we have correct classification, but to get away from all points. ⌟

VI Neural Network Models

In previous discussions, we have been constraint to having a model ready and discuss their features by
update. However, we do not have to decide on what the pre-processed features are in advance. We can
use data to determine.

VI.1 Projection Pursuit Model

Setup VI.1.1. Simple Unrestricted Function.

We pick m different linear combinations of the features x⃗, namely β⃗⊺m · x⃗, where we learn a complex
non-linear link function and add the results into:

f (x⃗) =
M

∑
m=1

gm
(

β⃗⊺m · x⃗
)

for a set of unrestricted gm(•). ⌟

Note that the output is not a weighted sum of gm, since the weights may be absorbed into gm. This model
is more general than a pure linear model, as it inserts non-linearities via gm.

Proposition VI.1.2. Universal Approximator.

Suppose that M is large enough, we can learn any function with derivatives as closely as desired. Such a
function learner is called a universal approximator. ⌟

It seems that the existence of universal approximator is a contradiction to the no free lunch principle,
however, they are compatible.

Remark VI.1.3. Universal Approximator is Compatible with No Free Lunch Principle.
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While for any true f0 and a desired degree of accuracy, we can pick a large enough M to approximate,
but we do not know f0 in advance. If we choose poorly (too many or too few M), we will not get good
generalization. The assumption to pick M correctly is to know f0, in which learning is not necessary if we
know f0. ⌟

Now, our goal is to minimize error in a projection pursuit model. For simplicity, we let M = 1, and we
want to minimize:

1
n

n

∑
i=1

L
(
yi, g1(β⃗⊺ x⃗; η⃗)

)
=

1
n
(
yi − g1(β⃗⊺ x⃗; η⃗)

)2,

where η⃗ parameterizes our choice of g1. The natural choice here is to optimize β⃗ while holding η⃗ fixed,
and vice versa, which leads to two update rules based on derivatives.

Algorithm VI.1.4. Update Rule for Projection Pursuit Model.

Given β⃗ fixed, we create a new data set with features x̃i := β⃗⊺ · x⃗i for i = 1, · · · , n.

• We fit a univariate regression Y = g1(x̃; η⃗).
For example, if g is differentiable, we solve the score equation for η⃗.

• Given fixed η⃗, we can set up a Newton-Raphson procedure using the Taylor expansion:

g(β⃗⊺ x⃗) ' g(β⃗⊺0 · · · x⃗) + g′(β⃗⊺0 · · · x⃗)(β⃗− β⃗0)
⊺ x⃗.

• Then, consider the following trick:
n

∑
i=1

(
yi − g(β⃗⊺ x⃗i)

)2 '
n

∑
i=1

g′(β⃗0 x⃗i)
2
(

β⊺0 x⃗i +
yi − g(β⃗⊺0 x⃗i)

g′(β⃗0⊺ x⃗i)︸ ︷︷ ︸
new pseudo-outcome ỹi

−β⃗⊺ x⃗i

)2

.

• This implies that we can solve a weighted linear regression with features x⃗ and outcome:

ỹ := β⃗⊺0 +
yi − g(β⃗0

⊺
x⃗)

g′(β⃗⊺0 x⃗)
,

with each row weighted by g′(β⃗⊺0 x⃗i)
2.

We may iterate these steps for β⃗ and η⃗ until convergence. ⌟

VI.2 Neural Network Models

Neural networks are generalization of linear models and related to the projection pursuit models. It aims
to model the human brain.

The model architecture is by nesting the simple linear models (with a link function) together for output
of one model serves as input of one another, in layers.

Setup VI.2.1. Activation Function and Layers.
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The typical form of jth output at the ith layer is to have a function of all outputs from i− 1th layer:

xij = g(β0 + β⃗⊺i−1 ⃗xi−1; η⃗).

Here, the β0 term is a bias term in the neural network model, and g(•) is the activation function. ⌟

In the neural network model, the first layer are the input features and the last layer forms the output.

Y

X1

X2

X3

A1

A2

f (X)

Figure VI.1. A neural network with 3 input features, a second layer with 2 outputs, and the final outcome layer with 1 outcome.

Example VI.2.2. Activation Function.

There are a lot of activation functions, the most typical two are:

• Sigmoid:
1

1 + e−v ,

• ReLU, Rectified linear unit: max{0, v}.

These functions tend to exhibit a phase transition from a low to high value after the put increases past a
critical points, which is just like how neurons works in brain.

v

g(v)

Figure VI.2. Activations functions: ReLU(red) and sigmoid(blue). ⌟

Again, for the neural network, we need a loss function and an optimization algorithm.

Setup VI.2.3. Loss Function for Neural Network.

For the regression problems, we typically use the squared loss:
n

∑
i=1

(
yi − f (x⃗i)

)2.
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For the classification problems with k classes, there are typically k output layer vertices or a since vertex
with a softmax function exp(xi)/ ∑k

j=1 exp(xj), with the loss given by:
n

∑
i=1

yi log f (x⃗i).

Assume that we have a single output and squared loss, then the neural network model loss with M layers
(excluding the last layer, and assuming Km vertices in the mth layer) is:

R(β⃗) =
1
n

n

∑
i=1

1
2
(
yi − f (x⃗i)

)2
=

1
n

n

∑
i=1

1
2
(
yi − gM

(
β⃗⊺M︸︷︷︸

size =Km

)
· ˜xi,M

)
,

where:
x̃i,m = x⃗i; x̃i,m =

(
g1,m

(
β⃗⊺1,m · x̃i,m−1

)
· · · gKm ,m

(
β⃗⊺Km ,m · x̃i,m−1

))⊺
. ⌟

An obvious approach is to solve ∂R(β⃗/∂β⃗) = 0. It will not be solvable in closed form, but we may use the
gradient descent.

VI.3 Backpropagation

Taking derivatives for neural network models is not that bad, since it has regular structure:

• New layer outputs are linear functions of the previous layer, and linearity is preserved through
composition.

• The activation function is, hopefully, differentiable.

Remark VI.3.1. Chain Rule in Derivatives.

Thus, we will be able to apply the chain rule of differentiation to decompose the overall derivatives into
pieces associated with parts of the network diagram.

R(β⃗) =
1
n

n

∑
i=1

1
2
(
yi − gM(β⃗⊺M · ˜xM)

)2,

∂R(β⃗)

∂β⃗M
= − 1

n

n

∑
i=1

(
yi − gM(β⃗⊺M · x̃i,M)

)
g′M
(

β⃗⊺M · x̃i,M
)︸ ︷︷ ︸

term from chain rule applied at M, denoted ∆M

·x̃i,M.

⌟

Now, we may consider the partial derivatives with respect to some entries, that is:

∂R(β⃗)

∂β⃗k,m
= ∑

j
∆j,m+1β j,m+1g′k,m

(
β⃗1,m · x̃i,m

)
︸ ︷︷ ︸

terms from chain rule applied at m, denoted ∆k,m

x̃i,k,m.

Therefore, to calculate derivatives for every β⃗k,m, we need to calculate g′k,m and ∆m+1.

Strategically, we can store these locally in a graph data structure mirroring the network graph. To have
this algorithm, we need to decide upon:

(i) Step size. (There are a lot of choices, some steps decay over time.)

(ii) Starting parameter values. (Often randomized around linear values of the activation function.)
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VI.4 Issues and Improvements on Models

Now, the neural network has a lot of parameters, which causes various issues.

Remark VI.4.1. Issues with Neural Network.

(i) Gradient descent is very slow.

(ii) The loss surface is highly non-convex, so there are a lot of saddle points rather than maximum/min-
imum.

(iii) May overfit.

(iv) Some activation functions may not be differentiable everywhere.
For example, ReLU is non-differentiable at v = 0.

(v) Good solutions to these problems led to the development of deep learning based on neural network
with many layer, and they are currently the best performing predictors (such as in vision, speech
recognition, etc.). ⌟

Algorithm VI.4.2. Solution to Time Complexity: Stochastic Gradient Descent.

Considering about time efficiency, we use the stochastic gradient descent (SGD), which update based on
a random small subset of the data (maybe even a single row).
Here, SGD will pick the right direction in expectation, since we assumed randomness and it will descent
towards the correct direction. The steps could be noisy at first, but it would be faster. ⌟

For non-convex surfaces, there is no easy answer, we can try to restart the model or use optimization
tricks.

For differentiability, although ReLU is not entirely differentiable, it is faster to compute since it is piece-
wise linear.

For overfitting issues, consider regularization, dropout learning, and network tuning.

Setup VI.4.3. Regularization in Neural Network.

There are many regularization schemes for neural networks. A common one is one shared with paramet-
ric regression models, by modifying the risk as:

R(β⃗) =
1
n

n

∑
i=1

1
2
(
yi − gM(β⃗⊺M · x̃i,m)

)2
+ λ ∑

j
β2

j .

For the multiple layers, we can also regularize parts of the risk separately. ⌟

Note that the penalty term is also differentiable, so we can still use GD or SGD.
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Setup VI.4.4. Dropout Learning.

During GD or SGD, we randomly choose a fraction ϕ of inputs to ignore, while upweight the other
parameters by 1/(1− ϕ).

Y

X1

X2

X3

A1

A2

f (X)

Figure VI.3. Dropping out some inputs and nodes in the layers to ignore.

Note that the dropouts are random, so the dropout learning can be viewed as a random forest and
bagging, since we then combine the results together. ⌟

One application of strategy is to use data augmentation.

Setup VI.4.5. Data Augmentation.

One way to avoid overfitting is to artificially augment a training data set with additional examples with a
known class.
Especially for graphic, this can be easily done with images by applying affine transformations (rotations,
translations, etc.) This will force the model to learn some other presentations that are invariant to differ-
ences irrelevant to the class. ⌟

Another strategy is to use network tunning, since there are lots of meta-parameters, that acts like black
arts. In particular, we want to think of these parameters:

• Regularization meta-parameter λ,

• Network architecture, i.e., number of hidden layers, nodes per layer, activation functions, etc.

• Choice for SGD, which is algorithm for choosing the subset of data, size of the subset, etc.

• Choices for data augmentation.

VI.5 Interpolation and Double Descent

As people try to explain the performances of deep learning neural network models, they, according to
the theory, should overfit.

Remark VI.5.1. Double Descent.

For the neural network models, there is a phenomenon as double descent. In particular, the generaliza-
tion error decreases as training fit improves, then increases as model overfits, but can then decrease again
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as the model is overparameterized. ⌟

One tentative explanation to this phenomenon is that the model matches the degree of freedom in the
data. There is only one way to achieve 0 in training error.
When the model is very overparameterized, there are many ways to achieve training error of 0, and by
applying regularization, we can get better generalization by picking an appropriately smooth way.

VI.6 Convolution Neural Network

Convolution neural networks (CNNs) are a particular type of neural network that specializes classifica-
tion tasks using images as inputs.

They work by extracting a set of low level features (such as lines separating large color changes, spots,
etc.) and combine them into high level features that corresponds to parts of objects, and eventually com-
bining into objects.

Setup VI.6.1. Convolution and Pooling.

Convolution elements implement recognizing of a feature, whereas pooling elements implement summa-
rizing what was found so far. ⌟

These steps can be thought of as doing feature extractions before feeding into a regular neural network
in the final layers.

Definition VI.6.2. Convolution Elements.

A convolution is an element-wise multiplication of sub-matrices in an input matrix by another sub-matrix
caled a convolution filter. ⌟

Given an original image


a b c
d e f
g h i
j k l

 and the convolution filter

(
α β

γ δ

)
, their convoluted image becomes:

aα + bβ + dγ + eδ bα + cβ + eγ + f δ

dα + eβ + gγ + hδ eα + f β + hγ + iδ
gα + hβ + jγ + kδ hα + iβ + kγ + lδ

 .

If we want to build a binary recognizer based on convolution, we can use ReLU unit (or other activation
functions that get the convoluted image as input).

Example VI.6.3. Pooling Elements.

A pooling aims to summarize a large image into a smaller one.
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There are lots of approximation, a common one is by max operator, so it summarizes a sub-matrix by the
largest element. It could be useful to recognize a large value in a region of an image. ⌟

In general, the CNN architecture has lots of meta-parameter choices, and has convolution and pooling
layers alternating for multiple times, before the summarized output is fed into a regular (often shallow)
neural network.

Here, we mention about the special structure of the recurrent neural network. It is used for prediction
problems where input is a temporal sequence.

Setup VI.6.4. Recurrent Neural Networks.

We want a recipe for constructing a family of unrolled network, where parameters in each time-step are
shared. The parameter learning may be viewed as done on the unrolled network via the usual method,
but updating the same parameters at multiple layers.

Oℓ−1 Oℓ Oℓ+1

· · · Aℓ−1 Aℓ Aℓ+1 · · ·

Xℓ−1 Xℓ Xℓ+1

U U

Bℓ−1

U

Bℓ

U

Bℓ+1

Wℓ−1 Wℓ Wℓ+1

Figure VI.4. Reuse of the data Aℓ as the neural network unrolls in a chain of complex. ⌟

In particular, the recurrent neural networks can be helpful in Healthcare data, image classification, text
classification, videos, time series forecasting, etc.

Remark VI.6.5. General Notes for Neural Network.

The deep learning neural network are popular but very complicated models, they do not work well out
of the box. The training is with enormous data sets and long running times for training to reach the state
of the good performance.
It is important to think of many practical problems with simple predictors that often perform just as well.
The simple logistic regression classifier are performing well in many settings.
Hence, try the simple algorithms first. ⌟

VII Graphical Models

The Naïve Bayes assumes that all features are independent given a class label, but the Markov model is
defined by conditional independence restrictions, and is a general and powerful class of models.

Such models are often represented as graphical models, which bring visual intuitions to the system. The
graphical models are helpful in various fields:
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• Input the domains of knowledge into predictive model.

• Learning complex network of associations.

• Causal reasoning and inference.

• Unsupervised learning models.

• Missing data problem.

• Interpretation of existing models.

In particular, probability is for reasoning consistently about uncertainty, but is hard to visualize. Here, the
graphs can represent independence/irrelevance in probability distribution, which help with efficiency.

VII.1 Markov Random Field

Ernst Ising first developed undirected graph to model the spin states in metals.

Setup VII.1.1. Undirected Model for State of Atoms.

Iron atoms have states up and down, and the magnetized irons has most states pointing in the same
direction, while they want to be like their neighbors. Hence, in the setup:

• Vertices are atoms and edges connect the neighbors.

• The corresponding model is that atoms states only depends on immediate neighbors.

• The model could be 1D/2D/3D, while higher dimensions means higher complexity.

A1 A2 A3

A4 A5 A6

Figure VII.1. Vertices and edges representing the probability model. ⌟

With such setup, we can use graphs to represent the relationship of the models rather than using a table.

Definition VII.1.2. Markov Random Field.

Markov random fields (MRFs) are undirected models, which gives probability of any configuration in
terms of local factors. For Ising and a graph G, we have:

P(a1, a2, · · · , ak) =
1
Z ∏

Ai is a node in G
ϕ(ai) ∏

(Ai ,Aj) is an edge in G
ϕ(ai, aj),

where ϕ maps Ai to numbers, representing propensity of neighbors to have the same value (this is not
probabilities).



M.L. Lecture Summary 57

Aside, Z is the normalizing factor to make the sum of all products to be 1, which is related to amount of
energy in system for Ising. ⌟

At high energy, atoms are disordered, where P is close to uniform distribution. At low energy, the atoms
are arranges as all “up” or all “down”.

VII.2 Factorization and Markov Properties

In particular, distributions forming a graphical model may be defined in different ways, but a distribution
P(x⃗) of a graph G can generally be factorized, or expressed as a product of smaller pieces defined by G.
The factorization helps to define a tractable likelihood.

Definition VII.2.1. Global Markov Property.

A distribution P(x⃗) in a graphical model of a graph G obeys the global Markov property obeys indepen-
dence restrictions that can be read off from G via a criterion involving paths. ⌟

Definition VII.2.2. Local Markov Property.

A distribution P(x⃗) in a graphical model of a graph G obeys the local Markov property if it can be defined
by a small list of constraints defined by G. ⌟

Note that the local Markov properties are helpful for proving a distribution is in a model.

Definition VII.2.3. Clique and Maximum Clique.

A clique is a set of vertices that are pairwise connected.
A maximum clique C⃗ in a graph G is a subset of pairwise connected vertices, where no proper superset of
C⃗ is a clique. Here, we denote the set of all maximum cliques by C. ⌟

For notation simplicity, we typically call a maximum clique a clique.

Remark VII.2.4. Clique can Intersect.

Cliques can intersect. For example, with graph A− B− C, the cliques are {A, B} and {B, C}. ⌟

Proposition VII.2.5. Factorization of Graph.

Given a graph G, a distribution P(x⃗) in the MRF model associated with G factorizes as:

P(x⃗) =
1
Z ∏

C⃗∈C(G)
ϕC⃗ (⃗c),
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where the choice c⃗ on edge C⃗ is arbitrary, and Z is the the normalization factor, i.e.:

Z =
∫

∏
C⃗∈C(G)

ϕC⃗ (⃗c)dx⃗,

to ensure that P(x⃗) sum to 1 for all combinations of x⃗. ⌟

Again, ϕC⃗ (⃗c) is not in general probability distribution and does not necessarily sum to 1.

Example VII.2.6. MRF Factorization of a Graph.

Let a G graph be defined as:

A1 A2

A3

A4 A5

A6

Figure VII.2. Undirected graphical model for G.

Here, the maximum cliques are:

{A1, A2, A3}, {A1, A2, A4, A5}, and {A4, A5, A6}.

Therefore, the probability model is:

P(a1, a2, a3, a4, a5, a6) =
1
Z

ϕA1,A2,A3(a1, a2, a3)ϕA1,A2,A4,A5(a1, a2, a4, a5)ϕA4,A5,A6(a4, a5, a6). ⌟

Definition VII.2.7. Path Separation.

Given three disjoint sets A⃗, B⃗, and C⃗, A⃗ is path-separated from B⃗ given C⃗ in G if for every A ∈ A⃗ and
B ∈ B⃗, every path from A to B is intersected by one or elements of C⃗, and it is denoted as A⃗qG B⃗ | C⃗. ⌟

The path-separation is an indication of global Markov property.

Proposition VII.2.8. Path Separation =⇒ Conditional Independence.

For every disjoint A⃗, B⃗, and C⃗, A⃗qG B⃗ | C⃗ implies A⃗qP(x⃗) B⃗ | C⃗. ⌟

Note that the converse is not necessarily true.

Example VII.2.9. Example of Path Independence.

In graph demonstrated by Figure VII.2:

• A1 q A6 | A2, A4 is false, since we have A1 − A5 − A6.

• A1 q A6 | A2, A4, A5 is true, although A2 is unnecessary. ⌟
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The local Markov property depends only on neighbors.

Proposition VII.2.10. Non-neighbor Independent w.r.t. Neighbors.

Suppose P(x⃗) is the MRF model of G, every variable A is independent of non-neighbors given all neigh-
bors. ⌟

Example VII.2.11. Example of Local Markov Property.

Again, in graph demonstrated by Figure VII.2, the following are all local Markov properties:

A1 q A6 | A2, A3, A4, A5,

A2 q A6 | A1, A3, A4, A5,

A3 q A4, A5, A6 | A1, A2,

A4 q A3 | A1, A2, A5, A6,

A5 q A3 | A1, A2, A4, A6,

A6 q A1, A2, A3 | A4, A5. ⌟

In fact, factorization and the two Markov properties are equivalent.

Theorem VII.2.12. Hammersley-Clifford Theorem.

Given a positive distribution P(x⃗), i.e., for all x⃗, P(x⃗) > 0, the following are equivalent:

(i) P(x⃗) factorizes with respect to G,

(ii) P(x⃗) obeys the global Markove property with respect to G, and

(iii) P(x⃗) obeys the local Markove property with respect to G. ⌟

VII.3 Directed Models

Sewall Wright developed directed models for pedigree analysis for animals. Animals inherit traits from
parents probabilistically. The goal is to formalize the degree of inbreeding.

Setup VII.3.1. Directed Model and Degree of Inbreeding.

In the model, we have various arrows:

• → means causal, that is, the parent trait cause child traits.

• ↔ means correlation of noise, and it makes the model more complex.

Moreover, for the graph to work, we enforce that there must be no cycles, i.e., one cannot be their own
ancestor. ⌟

In Wright’s model of related variables Y and X such that X → Y is in G, then using a linear regression:

Y = w0 + ∑
Xi

wi · Xi + ϵY.
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Here, the model allows correlation between noise terms, which is represented as:

cov(ϵYi , ϵYk ) 6= 0,

which is represented as Yi ↔ Yj.

Setup VII.3.2. Path Analysis.

The inbreeding coefficient of two variables is the measure of dependence in the model, which is the sum
of contributions from relevant paths in graph. The paths must satisfy that:

• Must trace back then forward, and not the other way around.

• Must not pass a variable twice.

• Can pass at most one bi-directed edge per path.

Therefore, the contribution of a path is the product of all coefficients along the path. ⌟

Example VII.3.3. Path Analysis Example.

Here, we define a directed graph G as follows:

E

C

A B

D

F

G

Figure VII.3. Directed graphical model for G.

Here, to evaluate the inbred factor between xE and xF, we find all relevant paths:

(i) E← C ← A↔ B→ F,

(ii) E← C ← B→ F, and

(iii) E→ F.

Hence, the inbreeding coefficient is:

f = ψ(C, E)ψ(A, C)ψ(A, B)ψ(B, F) + ψ(C, E)ψ(B, C)ψ(B, F) + ψ(E, F),

where ψ(X, Y) represents the association factor of the causal relationship of X to Y. ⌟

The Structural Equation Models (SEMs) has applications on social sciences and economics, and the com-
puter programs has iterative fitting. It applies to areas that may not necessarily be causal.

Example VII.3.4. Hidden Markov Model.

An example of directed model is the hidden Markov model, which was developed for speech process-
ing. The model has a hidden state of known complexity evolving in discrete time. The model can be
represented as:
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A1 A2 A3 A4 · · ·

B1 B2 B3 B4

Figure VII.4. Model of hidden Markov model for speech recognition.

The model can be modeled by the conditional probability as:

P(Ai | Ai−1) and P(Bi | Ai).

In descriptive language, Ai are the words said and Bi are the speech sound wave.
The Viterbi is an efficient algorithm for such model. ⌟

There are also many other special cases. The directional models are different from MRFs, and the models
could be either statistical causal.

VII.4 Bayesian Networks

Setup VII.4.1. Terminologies of Graph.

Given a directed graph, we have:

• paG(•) representing the set of parents,

• chG(•) representing the set of children,

• anG(•) representing the set of ancestors, and

• deG(•) representing the set of descendants. ⌟

One special model is the Bayesian network.

Example VII.4.2. Sample Bayesian Network.

Here, we define a Bayesian network graph G as follows:

A

C

B

D E

Figure VII.5. Bayesian network model for G.

In the graph, according to the path A→ C → D → E, we have:

• A, C, D ∈ anG(E), D ∈ paG(E),

• C, D, E ∈ deG(A), and C ∈ chG(A). ⌟
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Definition VII.4.3. Bayesian Network.

A Bayesian network model links probability distributions and a directed acyclic graph (DAG), which is
similar to MRFs. It must satisfy that:

• Directed: It must only contain→ edges.

• Acyclic: If X ∈ deG(Y), then Y /∈ chG(X). ⌟

Different from the Directed graph,→ in Bayesian model is not causal.

Proposition VII.4.4. Factorization in Bayesian Network.

Given a distribution, the factorization has a term for a conditional distribution of a variable given its
parents. ⌟

Example VII.4.5. Bayesian Network of Factorization.

In graph demonstrated by Figure VII.5, we have the factorization as:

P(A, B, C, D, E) = P(E | D)P(D | B, C)P(C | A)P(B | A)P(A). ⌟

Note that by using such approach, if the graph has fewer edges, it needs fewer parameters.

Remark VII.4.6. Reduce Use of Parameters.

In the above example, assume it is binary model, then the total distribution (left) needs 25 − 1 = 31
parameters, but the factorized model (right) needs only 21 + 22 + 21 + 21 + 1 = 11 parameters. ⌟

Bayesian network models also has Markov properties as of undirected graph, i.e., graph implies a small
list of independences that imply the rest.

Proposition VII.4.7. Local Markov Property.

Every X is independent of non-parental, non-descendants, conditional on parents. ⌟

Example VII.4.8. Local Markov Property on Bayesian Model.

In graph demonstrated by Figure VII.5, for the node C, we have:

Cq B | A. ⌟

Definition VII.4.9. Observational Equivalence.

Two graphs are called observational equivalent if their local Markov property gives the same indepen-
dence. ⌟



M.L. Lecture Summary 63

For example, the graphs A → B → C and A ← B ← C are observational equivalent, as they have
Aq C | B as the only independence.

Definition VII.4.10. Blocking of Triplets.

For the blocking of triplets, we need to distinguish by cases:

• Directed triplet:
A→ B→ C,

if unobserved, we have A 6 qC, if observed, then Aq C | B.
In causal intuition, if B is a noisy version of A and C is a noisy version of B, then C is a noisy version
of A.

• Split triplet:
A← B→ C,

if unobserved, we have A 6 qC, if observed, then Aq C | B.
In a causal intuition, if A and C share a common cause, they become dependent.

• Collider triplet:
A→ B← C,

if unobserved, we have Aq C, if observed, then A 6 qC | B.
In a causal intuition, A and C are two independent causes of an effect, but knowing a shared effect
creates the dependence of cause.

• Note on Descendants of Colliders:
A

B1 B2 · · · Bk

C

as long as Bk is observed, we have A 6 qC | Bk down the chain. ⌟

Here, we want to use the triplets to form path blocking and d-separation.

Definition VII.4.11. Path Blocking and d-separation.

A path from A to B is blocked by C⃗ if there is a blocking triplet on the path. They are said to be d-
separated given C⃗ if all paths from A to B are block by C⃗. ⌟

Example VII.4.12. d-separation in Bayesian Network.

Again, from the graph demonstrated by Figure VII.5, we have:

• Aq E | C is false, since A→ B→ D → E is not blocked.

• Cq B|A is true, since C ← A→ B and C → D ← B are blocked.
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⌟

Here, we denote (Aqd B | C⃗)G as A being d-separated from B given C⃗ in G, and this can be extended to
(A⃗qd B⃗ | C⃗)G if (Aqd B | C⃗)G for all A ∈ A⃗ and B ∈ B⃗.

Proposition VII.4.13. Global Markov Property.

Suppose G(V⃗) is a Bayesian network with DAG, then (Aqd B | C⃗)G(V⃗) implies Aq
P(V⃗) B | C⃗. ⌟

Note that the converse is also not necessarily true, since there could be extra independences in P(V⃗).

Theorem VII.4.14. Verma and Peral.

Given a DAG G(V⃗), the following are equivalent:

(i) the distribution P(V⃗) factorizes according to G,

(ii) the distribution obeys the local Markov property according to G, and

(iii) the distribution obeys the global Markov property according to G. ⌟

The Bayesian network is a generalization of Naïve Bayes, so we can consider the following.

Remark VII.4.15. Naïve Bayes is a Special Bayesian Network.

The Naïve Bayes may be viewed as a DAG model, that is:

P(x⃗, y) = P(y)P(x1 | y) · · ·P(xk | y).

Graphically, it is:

Y

X1 X2 X3 X4 · · ·

Figure VII.6. Model of hidden Markov model for speech recognition.

⌟

VII.5 Computation of Marginal Likelihood

Assume that we are using P(x⃗, y) in a graphical model form some graph G for prediction, it can be done
using maximizing the likelihood, that is E[y | x⃗].

Example VII.5.1. Likelihood for MRF is Computationally Intense.

Consider the MRF with graph G, its likelihood would be:
n

∏
i=1

P(x⃗i, yi) =
n

∏
i=1

1
Z ∏

C⃗∈C(G)
ϕC⃗(c⃗i).
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The problem with this computation is its computation complexity. To compute Z, we need to sum over all
values of x⃗ and y, and given k number of binary features and binary outcome, it requires w201 operations,
and this also occurs when computing conditional expectations. ⌟

Now, if we consider the computation of marginals in a chain, we may take advantage if conditional inde-
pendence of the model.

Example VII.5.2. Computing Marginal in Chain for DAG by Conditional Independence.

Consider the chain of the following DAG:

X1 X2 X3 · · · Xk

Figure VII.7. DAG of a chain.

Therefore, we may consider the constraints of the model as:

xi q x1, · · · , xi−2 | xi−1.

Therefore, we may represent the marginal probability as:

P(xk) = ∑
x1,··· ,xk−1

P(x1, · · · , xk)

= ∑
x1,··· ,xk−1

P(x1)
k

∏
i=2

P(xi | x1, · · · , xi−1) (By chain rule.)

= ∑
x1,··· ,xk−1

P(x1)
k

∏
i=2

P(xi | xi−1) (By model constraits.)

= ∑
x2,··· ,xk−1

(
∑
x1

P(x1)P(x2 | x1)

)
︸ ︷︷ ︸

P(x2)

k

∏
i=3

P(xi | xi−1) = ∑
x2,··· ,xk−1

P(x2)
k

∏
i=3

P(xi | xi−1)

= ∑
x3,··· ,xk−1

(
∑
x2

P(x2)P(x3 | x2)

)
︸ ︷︷ ︸

P(x3)

k

∏
i=4

P(xi | xi−1) = · · · = P(xk).

Therefore, by the approach, the sum of each marginal probability is a constant of operations repeated for
O(k) times, so the computation is linear (compared to O(2k) for naïve approach). ⌟

Similarly, this also applies to MRF chains, i.e., for the undirected graphs.

Example VII.5.3. Computing Marginal in MRF Chain by Conditional Independence.

Consider the chain of the following DAG:

X1 X2 X3 · · · Xk

Figure VII.8. MRF of a chain.

Therefore, we may consider the constraints of the model as:

xi q x1, · · · , xi−2, xi+2, · · · , xk | xi−1, xi+1.
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Therefore, we may form the model as:

Z ·P(xk) = Z · ∑
x1,··· ,xk−1

P(x1, · · · , xk)

= ∑
x1,··· ,xk−1

k−1

∏
i=1

ϕXi ,Xi+1(xi, xi+1) (By model factorization)

= ∑
x2,··· ,xk−1

(
∑
x1

ϕX1,X2(x1, x2)

)
︸ ︷︷ ︸

ϕ∗X2
(x2)

k−1

∏
i=2

ϕXi ,Xi+1(xi, xi+1) = ∑
x2,··· ,xk−1

ϕ∗X2
(x2)

k−1

∏
i=2

ϕXi ,Xi+1(xi, xi+1)

= ∑
x3,··· ,xk−1

(
∑
x2

ϕX2,X3(x2, x3)

)
︸ ︷︷ ︸

ϕ∗X3
(x3)

k−1

∏
i=3

ϕXi ,Xi+1(xi, xi+1) = · · · = ψ∗Xk
(xk).

Therefore, we have that:

P(xk) =
ϕ∗Xk

(xk)

Z
=

ϕ∗Xk
(xk)

∑xk
ϕ∗Xk

(xk)
.

Here, we also simply into the sum of each marginal probability being a constant of operations repeated
for O(k) times, so the computation is linear (compared to O(2k) for naïve approach). ⌟

VII.6 Message Passing

It is noteworthy to consider finding the marginal probability at arbitrary node, here, we consider the
same formula as:

Z ·P(xi) = ∑
xi−1,xi+1

ϕ∗Xi−1
(xi−1)ϕXi−1,Xi (xi−1, xi)ϕ

∗
Xi+1

(xi−1)ϕXi ,Xi+1(xi, xi+1),

which implies that:

P(xi) =
∑xi−1,xi+1

ϕ∗Xi−1
(xi−1)ϕXi−1,Xi (xi−1, xi)ϕ

∗
Xi+1

(xi−1)ϕXi ,Xi+1(xi, xi+1)

Z

=
∑xi−1,xi+1

ϕ∗Xi−1
(xi−1)ϕXi−1,Xi (xi−1, xi)ϕ

∗
Xi+1

(xi−1)ϕXi ,Xi+1(xi, xi+1)

∑xi−1,xi ,xi+1
ϕ∗Xi−1

(xi−1)ϕXi−1,Xi (xi−1, xi)ϕ
∗
Xi+1

(xi−1)ϕXi ,Xi+1(xi, xi+1)
.

Remark VII.6.1. Calculating Margin for Arbitrary Node.

Such procedure is universal for any Xi, hence we may calculate all marginals in a single pass by finding
the left and right of the chain. We consider the things passed as messages, where the message from left is
ϕX⃗i

(xi) and the message from right is ϕ ⃗Xi
(xi).

Such method is called message passing. ⌟

Algorithm VII.6.2. Message Passing for Chain.

The message passing works for marginal likelihood as:

P(x1) =
ϕ ⃗X1

(x1)

∑x1
ϕ ⃗X1

(x1)
, P(xi) =

ϕ ⃗Xi
(xi)ϕX⃗i(xi)

∑xi
ϕ ⃗Xi

(xi)ϕX⃗i(xi)

, P(xk) =
ϕX⃗k

(xk)

∑xk
ϕX⃗k

(xk)
.
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Note that by this algorithm, message passing allows us to calculate Z and all univariate margins in linear
time and space. ⌟

Also, such algorithm works for a tree as a generalized case than a chain.

Algorithm VII.6.3. Message Passing for Tree.

Consider a fragment of a undirected tree (with root X) as:

X

X1 X2

X4 X3

X5

Figure VII.9. Part of the MRF of a tree.

Now, suppose that we are computing P(xr), we consider the inbound message from all leaves of the tree
towards the root, and the outbound message away from the root towards the leaves.
Here, we consider X as the root, so we have the following example of messages:

• ϕX5→X1
X1

(x1) is an inbound message from X1 to X.

• ϕX5←X1
X5

(x5) is an outbound message from X to X1.

For a particular inbound message, we may recursive define it (from leaf to root) as:

ϕ
Xk→Xm
Xm

(xm) = ∑
xk

∏
Xi 6=Xm

Xi is a neighbor of Xk

ϕ
Xi→Xk
Xk

(xk)ϕXk ,Xm(xk, xm).

Correspondingly, the margin of the root is:

P(xr) =
∏Xn is a neighbor of Xr ϕXn→Xr

Xr
(xr)

∑xr ∏Xn is a neighbor of Xr ϕXn→Xr
Xr

(xr)
.

For a particular outbound message, we may recursive define it (from root to leaf) as:

ϕ
Xk←Xm
Xk

(xk) = ∑
xm

ϕXk ,Xm(xk, xm)ϕ
Xm←Xd
Xm

(xm) ∏
Xi 6=Xk ,Xi 6=Xd

Xi is a neighbor of Xm

ϕ
Xi→Xm
Xm

(xm),

where Xd is the neighbor of Xm that is closer to the root Xr than Xm (exists uniquely since the graph is a tree).
Correspondingly, the margin of any node (Xj, that is not root) is:

P(xj) =

(
∏ Xi 6=Xd

Xi is a neighbor of Xj
ϕ

Xi→Xj
Xj

(xj)

)
ϕ

Xi←Xd
Xj

(xj)

∑xj

(
∏ Xi 6=Xd

Xi is a neighbor of Xj
ϕ

Xi→Xj
Xj

(xj)

)
ϕ

Xi←Xd
Xj

(xj)

.

⌟

In this case, we may compute all conditionals in a univariate tree for MRF.

For binary variables, we form a table of size 2|X⃗| and we consider the case for P(X⃗ \ E⃗, E⃗ = e⃗), in which
we need a table of size 2|X⃗\E⃗| as the set of probabilities, then we set the probabilities of rows incompatible
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with e⃗ to zero, and normalize the other probabilities.

Example VII.6.4. Binary Univariate Tree MRF.

Consider the original table as:

x1 x2 P(x1, x2)

−1 −1 p1

−1 1 p2

1 −1 p3

1 1 p4

and with the given condition that x2 = 1, we have:

x1 x2 P(x1, x2 = 1)

−1 −1 0
−1 1 p2

1 −1 0
1 1 p4

In particular, we have:

• P(x2 = 1) = p2 + p4,

• P(x1 = −1 | x2 = 1) = p2
p2+p4

, and P(x1 = 1 | x2 = 1) = p4
p2+p4

. ⌟

Setup VII.6.5. General Setup for Univariate Tree MRF.

Assume that P(X⃗) is an MRF w.r.t G that is a univariate tree, then all ϕ are 2 tables of ϕXi ,Xj(xi, xj) in such
MRF. To calculate P(X⃗ \ E⃗ | E⃗ = e⃗), we follow that:

• Find all clique terms ϕXi ,Xj(xi, xj) where Xi ∈ E⃗ or Xj ∈ E⃗ as incompatible rows,

• set all incompatible rows with e⃗ in the table to 0, and

• Calculate all univariate margins as before.

In such circumstances, this will yield P(Xi | E⃗ = e⃗). Note that if Xi ∈ E⃗, the value is 1 for P(Xi = xi). ⌟

VII.7 Clique Tree and Chordal Graphs

Definition VII.7.1. Chordal.

An undirected graph is called a chordal if any cycle of size 4 or more have an edge not in the cycle
connecting vertices in the cycle.

X1 X2

X4 X3

X1 X2

X4 X3

Figure VII.10. Examples of Chordals in 4 cycle.
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Chordal graphs are nice since they allow us to construct a clique tree allowing us to perform message
passing efficiently. ⌟

Algorithm VII.7.2. Clique Tree Decomposition for MRF.

Given a undirected graph G with vertices V⃗, a tree decomposition is a tree with vertices V and edges E

such that:

(i) Every S⃗ ∈ V is a subset of V⃗,

(ii) The union of all S⃗ ∈ V is V⃗, i.e.,
⋃

S⃗∈V
S⃗ = V⃗,

(iii) If there is an edge ϵ ∈ E connecting S⃗1 and S⃗2, then there are vertices in V⃗ in common to both S⃗1

and S⃗2 (recall that S⃗1, S⃗2 ⊂ V⃗), and

(iv) It follows running intersection property: for any S⃗1 and S⃗2, any vertices in V⃗ they have in common
also occur in S⃗i ∈ V on the unique path in the tree from S⃗1 to S⃗2.

⌟

Example VII.7.3. Forming Clique Tree from Chordal Graph.

Consider the following chordal graph:

B

FA

GC

ED H

Figure VII.11. Chordal graph with 5 maximum cliques.

The clique tree it forms is:

BCFGBGH CEG

ACD ABCF

{B, G} {C, G}

{B, C, F}

{A, C}

Figure VII.12. Clique tree formed from the chordal graph. ⌟

In particular, chordal graphs has nice properties as we can construct a tree decomposition efficiently as a
clique tree. Moreover, we may define a partial order on the set of vertices.

Definition VII.7.4. Prefect Ordering of Vertices.
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A perfect ordering ≺ of the vertices satisfies that for every V, every neighbor is bigger than V according
to ≺ if it forms a clique with V. ⌟

Algorithm VII.7.5. Construction of the Chordal Graph.

We use the following steps:

(i) Find a perfect ordering of G,

(ii) Use the perfect ordering to find all maximal clique in G, and these will be vertices in V, and

(iii) Use a spanning tree algorithm to construct E connection V, where the edge weight for ϵ connecting
S⃗1 and S⃗2 as the number of nodes in V⃗ that is shared by S⃗1 and S⃗2. ⌟

Similar to the previous goal, we still want to compute margins or conditionals efficiently. In particular,
we calculate P(⃗s) for every S⃗ ∈ C(G).

Definition VII.7.6. Incoming and Outgoing Messages.

We can compute the incoming messages from S⃗k to neighbor S⃗m closer to the root S⃗k as:

ϕ
S⃗k→S⃗m

S⃗m∩S⃗k
(s⃗m ∩ s⃗k) = ∑

S⃗k\S⃗m

ϕS⃗k
(s⃗k)

 ∏
S⃗i 6=S⃗m

S⃗i is a neighbor of S⃗k

ϕ
S⃗k∩S⃗i

S⃗i→S⃗k
(s⃗k ∩ s⃗i)

 .

Similarly, we can compute the outgoing messages from S⃗m to neighbor S⃗k further from the root S⃗k as:

ϕ
S⃗k←S⃗m

S⃗m∩S⃗k
(s⃗m ∩ s⃗k) = ∑

S⃗m\S⃗k

ϕS⃗m
(s⃗m)ϕ

S⃗m←S⃗d
S⃗m∩S⃗d

(s⃗m ∩ s⃗d)

 ∏
S⃗i 6=S⃗k ,S⃗i 6=S⃗d

S⃗i is a neighbor of S⃗m

ϕ
S⃗m∩S⃗i

S⃗i→S⃗m (s⃗m ∩ s⃗i)

 .

⌟

Proposition VII.7.7. Computing Margins in a Clique Tree MRF.

Here, let G be a clique tree MRF, for each leaf node S⃗i with a neighbor node S⃗j, the margin is:

P(S⃗i) =
ϕ

S⃗i←S⃗j

S⃗j\S⃗i
ϕS⃗i

∑S⃗i
ϕ

S⃗i←S⃗j

S⃗j\S⃗i
ϕS⃗i

=
∑V⃗\S⃗i

∏C∈C(G) ϕC

∑V⃗ ∏C∈C(G) ϕC
.

For each non-leaf note S⃗i with a neighbor S⃗j closer to the root, and neighbors S⃗1, . . . , S⃗m further from the
root, the margin is:

P(S⃗i) =

ϕ
S⃗i←S⃗j

S⃗j\S⃗i
ϕS⃗i

(
∏m

k=1 ϕ
S⃗k→S⃗i
S⃗k\S⃗i

)
ϕS⃗i

∑S⃗i
ϕ

S⃗i←S⃗j

S⃗j\S⃗i
ϕS⃗i

(
∏m

k=1 ϕ
S⃗k→S⃗i
S⃗k\S⃗i

)
ϕS⃗i

=
∑V⃗\S⃗i

∏C∈C(G) ϕC

∑V⃗ ∏C∈C(G) ϕC
.
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For the root node S⃗i with neighbors S⃗1, . . . , S⃗m, the margin is:

P(S⃗i) =

(
∏m

k=1 ϕ
S⃗k→S⃗i
S⃗k\S⃗i

)
ϕS⃗i

∑S⃗i

(
∏m

k=1 ϕ
S⃗k→S⃗i
S⃗k\S⃗i

)
ϕS⃗i

=
∑V⃗\S⃗i

∏C∈C(G) ϕC

∑V⃗ ∏C∈C(G) ϕC
.

⌟

The algorithm is linear in the tree decomposition graph, but is exponential in the size of the cliques (since
only the largest clique matters, and the size of the largest clique is called the treewidth).

Also, if the graph has no missing edges, then the entire graph is a big maximum clique, and the algorithm
will be exponential.

Remark VII.7.8. Edge Cases in Chordal Trees.

There are some special cases where we want to make the graph into a Chordal tree.

• If the graph is not chordal, we can always add edges to make it chordal. (Potentially many ways to
make it chordal.)
We want to pick the optimal way so that treewidth is as small as possible. (However, this is NP-hard).

• If the graph is a DAG, we can form a moralized or augmented undirected graph Ga by adding an
undirected edge to any non-adjacent vertices with a child in common, and then drop all the edge
orientations.
Then, we assign the distributions P

(
V | paG(V)

)
to any clique in Ga containing V and paG(V). (If

any clique has no factors, it will be assigned with a trivial factor 1.) ⌟

VIII Semi-Supervised Learning and Unsupervised Learning

Recall from supervised learning, we consider it as learning a function, whereas in semi-supervised learn-
ing, there are some feedback, but there are less of them than supervised learning. Some examples are:

• Missing outcomes: learning a function from partial examples, where x⃗o are always observed but yi

are sometimes observed and sometimes not.

• Missing data: learning from x⃗i and yi where some entries (either feature or outcomes) are censored.

• Reinforcement learning: where agents acting in an environment, where the environment signals a
reward/punishment. (Agents aiming to learn which actions lead to high rewards.)

• Causal machine learning: use observed data to learn cause-effect relationships.

Unsupervised learning looks for patterns in the data without any supervision, some examples are:

• Clustering data points into groups.

• Learning a graphical model from data.

• Dimension reduction.
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VIII.1 Clustering Problem

In a clustering problem, we have a set of points x⃗ without class labels. We want to cluster points into a
set of k similar groups.

We cannot set up a loss using class labels, as they do not exist. What we can do is to define how similar
x⃗i and x⃗j are, and put similar points into one group. The question is how to define similarity and how to
make this an optimization problem.

Definition VIII.1.1. Metric Space.

Assume x ∈ Rk, we define a distance metric d : Rk ×Rk → R>0 so that for all x⃗i,∈ Rk, d satisfies:

• Positivity: d(x⃗1, x⃗2) ≥ 0,

• Definiteness: d(x⃗1, x⃗2) = 0 if and only if x⃗1 = x⃗2,

• Symmetry: d(x⃗1, x⃗2) = d(x⃗2, x⃗1), and

• Triangular Inequality: d(x⃗1, x⃗3) ≤ d(x⃗1, x⃗2) + d(x⃗2, x⃗3). ⌟

Typically, a natural choice of distance metric is the Euclidean distance, that is:

de(x⃗1, x⃗2) := ‖x⃗1 − x⃗2‖ =
√
(x11 − x12)2 + (x21 − x22)2 + · · ·+ (xk1 − xk2)2.

Remark VIII.1.2. Conventions in Euclidean Distance.

There are some conventions in Euclidean distance to simply the computations:

• Sometimes, we use the squared distance ‖x⃗1 − x⃗2‖2 as a monotone transformation for nonnegative
quantities. It does not change the order but simplifies calculations.

• Also, we need to normalize all dimensions so variations is on the same scale for each dimension,
otherwise, one or a few dimensions will dominate the distance, which is not desiring. ⌟

To solve clustering problem, suppose that we have a set of points x⃗1, · · · , x⃗n forming the data set [D] and
a distance metric d. We want to have k clusters.

The intuitive idea is to represent each cluster by some exemplar elements, called centroids, then we may
assign each point to the cluster based on which exemplar point it is closest to.

Setup VIII.1.3. Forming Exemplar Points.

We want to have exemplars as µ1, · · · , µk, and for each point x⃗i and each cluster j, in which j = 1, · · · , k,
we define an indicator parameter rij, for whether the point is clustered into the jth cluster.
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As long as we know all the exemplars, we just assign the point to the closest one:

rij =

1, if j = argminj ‖x⃗i − µj‖2,

0, otherwise.

Then, as we know which cluster each point is in, we can pick µj to be the mean of the points in jth cluster:

µj =
∑n

i=1 rij x⃗i

∑n
i=1 rij

,

which is the average of all the points on the Euclidean space. ⌟

The setup suggests a natural iterative procedure, which is guessing and keep iterating.

Algorithm VIII.1.4. The K-Means Algorithm.

Following the setup, we initialize at t = 0 by having µ10, · · · , µk0 to be k distinct random points in [D].
Then, we iteratively apply that:

• For every x⃗i, we set:

rij =

1, if j = argminj ‖x⃗i − µj‖2,

0, otherwise.

• Then, set t = t + 1, and for every cluster j, we calculate:

µjt =
∑n

i=1 rij x⃗i

∑n
i=1 rij

,

The K-means algorithm learns µj and rij to minimize the loss:
n

∑
i=1

k

∑
j=1

rij‖x⃗i − µj‖2. ⌟

Remark VIII.1.5. Notes on K-Means Algorithm.

The k-means algorithm has the following properties:

• The k-means algorithm has each parameter update minimizes the loss, so the algorithm will even-
tually reach a minimum.

• Since the problem is not convex in general, so it might not be a global minimum.
In fact, it is NP-hard to find the global minimum for Euclidean distances.

• The starting values matter for the clustering.
In practice, the algorithm is fast, so many starting values may be tried, and the best clusters were
kept. ⌟

The clustering do not have to use geometric distance, so the distance can be a specific notion of similar-
ity. An application of clustering is to cluster similar pixels of an image together (using RGB values rather
than location).
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Algorithm VIII.1.6. KNN as Distance-Based Prediction.

Given the notion of distance between points, a simple algorithm for learning functions given labeled data
[D] with features X⃗ and outcome Y can be simply storing [D].
Given a new point x⃗i, we can compute the k nearest closest points x⃗1, x⃗2, · · · , x⃗k in [D] with known labels,
and take a vote among them to decide on the outcome of x⃗i in terms of classification or take some sort of
average for regression. The method is known as k-nearest neighbor (KNN). ⌟

The KNN algorithm is effective is some problem, but it has some issues:

• It does not work well with high dimensional X⃗.

• Finding the closest few points to x⃗i may be computationally intense given large datasets [D].

• It is sensitive to the precise choice of distance.

VIII.2 EM Algorithm

The K-means algorithm is based on minimizing a distance-based loss, but it has no probabilities involved,
and in some cases, an explicit probabilistic model for data is more reasonable.

Setup VIII.2.1. Mixture Model for Learning Clusters.

Consider still with k clusters, we may describe a cluster probabilistically as points varying around an
exemplar point according to some probability distribution, which leads to Gaussian mixture model. The
mixture model has general form:

P(x⃗) = ∑
c

P(x⃗ | c)P(c),

where c is the unobserved ones. Here, P(c) is of some unobserved variable C, which is typically cat-
egorical. Thus, we can use C to represent cluster membership, and a common choice for P(x⃗ | c) is a
conditional multivariate Gaussian distribution, modeled as:

P(x⃗ | c) =
1

(1π)k/2|Σc|1/2 exp
[
−1

2
(x⃗− µ⃗c)

⊺Σ−1
c (x⃗− µ⃗c)

]
.

Moreover, we assign discrete probability distribution P(c) with parameters κi for i = 1, · · · , k− 1 to govern
the probability of belonging to a particular cluster. ⌟

The Mixture model is different from k-means, as now each point is not assigned to a cluster but rather
has a probability of being in a cluster (and probability should sum to 1).

Consequently, this gives use an observed data likelihood that we can maximize to solve for the parameters
for the model:

L[X]
(
{κi, µ⃗i, Σi : i = 1, · · · , k}

)
=

n

∏
i=1

∑
c

P(x⃗i | c)P(c).
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With this likelihood, we can use gradient descent to maximize it, but there happened to be a better algo-
rithm.

Remark VIII.2.2. Gaussian Mixture Model as Graphical Model.

Fundamentally, the Gaussian mixture model is a graphical model, represented as a DAG with hidden
variable:

C

X1 X2 X3 X4

Figure VIII.1. Graphical model for Gaussian mixture model.

In particular, the gray square vertex is a hidden category cluster variables, and the circles are observed
data features. ⌟

Algorithm VIII.2.3. The EM Algorithm.

Here, recall that our given likelihood is:

L[X]
(
{κi, µ⃗i, Σi : i = 1, · · · , k}

)
=

n

∏
i=1

∑
c

P(x⃗i | c)P(c).

If we could observe C, then we have the full data likelihood, that is:

L[X, C]
(
{κi, µ⃗i, Σi : i = 1, · · · , k}

)
=

n

∏
i=1

P(x⃗i | ci)P(ci).

Here, we may treat the full data likelihood as fixed in [X] but random in C, and take on the expectations
given C, that is:

E
[
L[X,C](β⃗) | [X]

]
w.r.t the distribution P(c | [X]).

Then for parameter β⃗(t), we can maximizing the expectation recursively, by:

β⃗(t+1) = argmax
β⃗

E
[
L[X,C](β⃗) | [X]; β⃗(t)].

As usual, we use the log likelihood, which is fundamentally the same story:

β⃗(t+1) = argmax
β⃗

E
[

logL[X,C](β⃗) | [X]; β⃗(t)].
Then, note that the probability is:

P(C = j | x⃗i; β⃗(t)) =
P(x⃗i | C = j)P(C = j)

∑j P(x⃗i | C = j)P(C = j)
=

κ
(t)
j N (x⃗i; µ⃗j

(t), Σ(t)
j )

∑k
ℓ=1 κ

(t)
ℓ N (x⃗i; µ⃗ℓ

(t), Σ(t)
ℓ )

.

Hence, we can show that the parameters that maximize the expectation of log likelihood can be estimated
as 1/n:

κ
(t+1)
j = P(C = j) =

1
n

n

∑
i=1

P(C = J | x⃗i; β⃗(t)),

µ⃗j
(t+1) = E[⃗x | C = j] = ∑n

i=1 P(C = j | x⃗i; β⃗(t))x⃗i

∑n
i=1 P(C = j | x⃗i; β⃗(t))

,

Σ(t−1)
j = Cov[⃗x | C = j] =

∑n
i=1 P(C = j | x⃗i; β⃗(t))(x⃗i − µ⃗j

(t+1))(x⃗i − µ⃗j
(t+1))⊺

∑n
i=1 P(C = j | x⃗i; β⃗(t))

.
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Note that these updates are in the closed form, so the algorithm can run iteratively. ⌟

Note that maximizing the log likelihood is the equivalent of maximizing likelihood, and as we think
about each row separately, one can proof that:

log P(x⃗i; β⃗)− log P(x⃗i; β⃗(t)) ≥ Qi(β⃗; β⃗(t))−Qi(β⃗(t); β⃗(t)),

where Qi is the ith row part of what an EM step maximizes, hence each step for each row is an improve-
ment.

Remark VIII.2.4. Notes about EM Algorithm as a Family.

The EM algorithms is a family of algorithms, so we have:

• Since the previous argument is independent of mixtures of Guassian, hence it works generically for
observed data and missing data.

• The EM is a generic family of algorithms for fitting likelihoods in hidden variable models or missing
data.

• The advantage of EM is that:

– No need to worry about choosing step size, it is iterative automatically.

– Optimizing E
[

logL[X,C](β⃗) | [X]; β⃗(t)] is easier than logL[X](β⃗), and

– It applies to a wide range of problems.

• Some disadvantages are that:

– It has no control over step size, so the overall algorithm may be slow.

– There could be blow ups by the singularities. ⌟

Recall that in the algorithm, we are updating µ⃗j and Σj with divisions, in case the denominator is zero
or very small, it is possible that the algorithm fails to converge, and the results might not be smooth
everywhere.

VIII.3 Missing Data

Missing data values are fact of life, there are dropout in studies, survey sampling, issues with data col-
lection, censoring by death, coarsened values, scarce outcome labeling, etc.

For model missing values, we can:

• Directly fit the full data likelihood (by EM, optimization, etc.), and can be better identified from
observed data.

• Imputation methods, but not always clear about the model and what we are imputing.

For model missingness status, we want to:
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• Inverse weighting/propensity score methods.

• Use semi-parametric methods, which need additional modeling.

Here, we think of the missing data counterfactually.

Definition VIII.3.1. Missing Variable.

We define a missing variable by X(1)
i , which is the variable Xi if we could hypothetically see it. Every

X(1)
i has an indicator Ri and a factual proxy variable Xi. In particular:

Xi =

X(1)
i , if Ri = 1,

(Undefined), if Ri = 0.

Thus, the missing variable is a counterfactual with Ri as treatment. ⌟

Now the problem turns to how Ri and X(1)
i are related, and we can use graphs to model their relationship.

The procedures are:

θ

P(X⃗(1))

x(1)11 x(1)21 x(1)31

x(1)12 x(1)22 x(1)32
...

...
...

 θ̂

P(R⃗, X⃗)

0 0 1
1 1 0
...

...
...

? ? x31

x12 x22 ?
...

...
...

 ϑ̂

cor

∼
(sampling)

full data
problem

∼ missing data

problem

There, Donald Rubin developed on the causal inference with missing data.

Definition VIII.3.2. Modern Missingness Hierarchy.

There are different level of missingness of the data:

• Missing Completely at Random (MCAR): The presence of ? can be determined by an independent
coin flip.

• Missing at Random (MAR): The presence of ? can be determined by coin flip independent of un-
derlying variable given observed data.

• Missing not at Random (MNAR): Neither of above applies. ⌟

The MCAR case is easy to deal with, while most missing data work assumes MAR, although it is unrealistic.
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Here, we do want to consider the missing case by case:

• For Missing Completely at Random, we have the events that lead to missingness occur indepen-
dently of observed and unobserved data, so we can translate it into:

X(1)
1 q R1,

which is a collider relationship, so graphically it is:

X1

X1 R1

Figure VIII.2. Collider model for MCAR.

Therefore, we have that:

P(X(1)
1 ) = P(X(1)

1 | R1 = 1) = P(X1 | R1 = 1).

Under MCAR, we can use observed case analysis, i.e., we can do the analysis on fully observed rows
only.

• For Missing at Random, the event that lead to missingness occur independently of unobserved data
given observed data, so it translates into:

X(1)
2 q R2 | X1,

that is we have X1 fully observed, so this is a split triplet.

X2

X2 R2

X1

Figure VIII.3. Split model for MAR.

Therefore, we have that:

P(X1, X(1)
2 ) = P(X(1)

2 | X1)P(X1) = P(X(1)
2 | X1, R2 = 1)P(X1) = P(X2 | R2 = 1, X1)P(X1).

Then it is no longer sufficient to just look at observed rows, so we use two estimators for E[X(1)
2 ],

that is:

– Likelihood based inference: E[X(1)
2 ] =

1
N ∑

i
E[X2 | R2 = 1, Xi

1], or

– Propensity based inference by Horvitz-Thompson: E[X(1)
2 ] =

1
N ∑

i

1(R2 = 1)
P(R2 = 1 | Xi

1)
Xi

2.

Without MAR, P(X⃗(1)) is not always a function of P(X⃗, R⃗), and a simple example could be variable causes
its own missingness status:

X1

X1 R1

Figure VIII.4. Cycle, variable causes its own missingness.
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Moreover, there will be no unique map from observed to full data even for binary X(1) since the full law
has a higher dimension of the observed law. Thus, there does not exist a two-sided inverse.

Remark VIII.3.3. Notes on Non-Identification.

In typical machine learning problems, quantities of interest were all function of the observed data distri-
bution, but it is not necessarily true, especially in missing data problems.
If the object we are estimating is not a function of the observed data distribution, given the model, we
could:

• Shrink the model (since model is a set), i.e., make more assumptions.

• Enlarge the parameter (give the parameters with bounds on it).
In particular, some parameters such as worst case risk is bounded for the computation complexity,
but here, computing a parameter is impossible.

• Change the parameter you want to estimate something easier.

• Give up and seek for better data. ⌟

Meanwhile, there ate various strategies to deal with missing data:

(i) Inverse weighting:

• We check that under the missing data model, P(R = 1 | X⃗(1)) is identified as f
(
P(R⃗, X⃗)

)
.

• Then, we can fit f̂
(
P(R⃗, X⃗)

)
by observed data.

• Thus, we create a new dataset representing a pseudo-population by weighting each row of the
original data by 1/ f̂

(
P(R⃗, X⃗)

)
.

• Alternatively, we can modify the score equation by the weighting, i.e., replace E
[
g(X⃗)

(
Y−E[Y |

X]
)]

for regression by E
[
1(R = 1)P(R | X⃗)g(X⃗)

(
Y−E[Y | X⃗]

)]
if Y is MAR given X⃗.

(ii) Imputation:

• For every row with observed data X⃗⃗r (governed by R⃗ = r⃗), we check that under the missing
data model that P(X⃗(1) \ X⃗(1)

r⃗ | X⃗⃗r) is identified as f⃗r
(
P(X⃗, R⃗)

)
.

• Then, we fir f̂⃗r
(
P(R⃗, X⃗)

)
using observed data for every patter r⃗.

• Then, we create a new dataset representing a pseudo-population by imputing all missing data
given a pattern r⃗ using f̂⃗r

(
P(R⃗, X⃗)

)
, that is sample all missing values.

• Eventually, we do the problem in the new dataset and repeat as many times as desired.

(iii) Maximum likelihood inference:

• Here, we check that P(R⃗, X⃗(1)) is identified as f
(
P(R⃗, X⃗)

)
.

• Then, we fit f̂
(

p(R⃗, X⃗)
)

using EM or GD algorithms.

• Then do the problem given parameters of the full data law.
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Definition VIII.3.4. Missing Data Graphs.

We can construct the missing data as graphs. These graphs follow that:

• Indicators cannot cause underlying counterfactuals.

• Each observed proxy only has two parents.

• There are no cycles.

• Use a single graph, with both observed and counterfactural variables on the same graph.

• In missing data only one counterfactual world matters, where we observe everything of R⃗ = 1.

X(1)
1 X(1)

2

R1 R2

X1 X2

Figure VIII.5. Valid (blue), and invalid (red) of missing data graph. ⌟

Proposition VIII.3.5. Laws of Data Models of DAG.

There are laws associated with data models of a DAG:

• Target law: P(X⃗(1), O⃗) over:

– Potentially missing random variables {X⃗1
(1)

, · · · , X⃗k
(1)}, and

– Observed random variables {O1, · · · , Om}.

• Nuisance law: P(R⃗ | X⃗(1), O⃗) over:

– Missingness indicators R⃗ ≡ {R1, · · · , Rk}.

• Coarsening law (deterministic): P(X⃗ | X⃗(1), R⃗), with:

– Xi ≡ X(1)
i if Ri = 1 and Xi ≡? if Ri = 0. ⌟

Hence, by the chain rule of probability, we have:

P(X⃗(1), O⃗) =
P(X⃗(1), O⃗, R⃗ = 1)

P(R⃗ = 1 | X⃗(1), O⃗)
=

P(X⃗, O⃗, R⃗ = 1)

P(R⃗ = 1 | X⃗(1), O⃗)
.

Therefore, P(X⃗(1), O⃗) is identifiable if and only if P(R⃗ = 1 | X⃗(1), O⃗) is identifiable.

Theorem VIII.3.6. Bhattacharya, Nabi, and S.

Any missing data DAG G on R⃗, X⃗(1), and O⃗ without:

• Self-censoring edges (X(1)
i → Ri), or
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• Colliders (X(1)
i → Rj ← Ri)

is identified. Any G with at least one of those structures is not. ⌟

VIII.4 Maximum Likelihood Inference

The maximum likelihood inference can be applied to a DAG model when identified.

Proposition VIII.4.1. Identified DGA Model.

If a DAG model is identified, then:

• Both P(X⃗(1)) and P(R⃗ | X⃗(1)) are functionals of P(R⃗, X⃗).

• P(X⃗(1), R⃗) factorizes w.r.t a DAG, and

• Each factor (a conditional in the full law) is an algebraic functional of P(R⃗, X⃗).

Note that the functional is not a conditional in the observed law in general, and is typically more com-
plicated. Therefore, under mild assumption of having smooth parameter map, we can maximize the
observed likelihood directly as:

Ln(R⃗, X⃗, O⃗; η) ≡
n

∏
i=1

∑
x(1)ji :rji=0

∏
vk∈x⃗,⃗r,⃗x(1)

P(vki | {vmi ∈ paG(vk)}).
⌟

Recall when we maximize the likelihood using EM algorithm, say we have counts #
(
vi, paG(vi)

)
of all

value combinations of vi, paG(vi) for every vi, including those with missing values at particular rows. IN
this case, we can obtain the MLE in closed form, via:

#
(
vi, paG(vi)

)
# paG(vi)

.

If we have missing data, we don’t have access to count of some vi and paG(vi). However, we can calculate
the expected counts given the observed data.

VIII.5 Structure Learning

Setup VIII.5.1. Structural Learning Algorithm.

Suppose that there is a graph G(V⃗) with k vertices and a distribution P(V⃗) factorizing relative to G.

• The input is a data set [X], assuming that it is sampled independently from P(V⃗).

• The output is a set of graphs consistent with what we know about [X], and hopefully it will include
G.

The structural learning is an unsupervised learning problem, and we want to find a causal description
of the data. ⌟
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Recall that Global Markov property is one way. This works when we known the DAG and want to know
what is implied by the data, but now we want to know that the data implies about the DAG.

Definition VIII.5.2. Faithfulness.

For any A⃗, B⃗, and C⃗ in a faithful DAG, then A⃗ is d-separated from B⃗ given C⃗ in G if and only if A⃗q B⃗ | C⃗
in P(V⃗). ⌟

The assumption for faithfulness is somewhat controversial. It can be thought of as an additional property
that P(V⃗) factorization according to G may satisfy.

Proposition VIII.5.3. Most Distributions will be Faithful.

Most P(V⃗) will be faithful, and the unfaithful distribution form a set of measure zero. ⌟

However, there are various caveats:

• If there are finite samples, we many not be able to tell unfaithful from nearly unfaithful P(V⃗), and
there are many more of those.

• Nature does not pick distributions at random, there may evolve unfaithful situations for evolutionary
reasons, such as homeostasis.

Hence, in practice, we should justify why faithfulness is sensible for the problem.

Recall by Definition VII.4.9, some graphs are observational equivalence, i.e., the local Markov property
gives the same independence. Hence, the structure learning can only learn graphs up to equivalent
classes (quotient of equivalent classes {G}/ ∼).

Theorem VIII.5.4. Verma and Pearl.

Two distinct DAGs G1 and G2 represent the same statistical DAG model if and only if they share skeletons
and unshielded colliders (that is A→ C ← B where A and B are not adjacent). ⌟

Example VIII.5.5. Equivalent Class of DAG.

Consider the following graphs:

A

B C

D

A

B C

D

A

B C

D

Figure VIII.6. Equivalent classes of DAGs.

All three DAGs gives that the model that B q C | A, D and A q D | B, and by Theorem VIII.5.4 Verma
and Pearl, they share the same skeletons and the unshielded colliders. ⌟
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Therefore, we can think of different types of structural learning.

Setup VIII.5.6. Constraint Based Learning.

The constraint based learning finds the constraints that hold in [X]. Then, we rule out graphs that are
inconsistent with the constraints we found, and we return what is left. ⌟

VIII.6 Score Based Learning

Another method to learn a graph is through the score based learning, which is to assign a quantitative
likelihood to the function.

Setup VIII.6.1. Score Based Learning.

• We assign a score to any graphical model.

• Scores typically reward fit.
At the same time, we also regularize, since we want a concise description of the data.

• Eventually, we do search (model selection) for high scoring models given [X]. ⌟

The score based learning is asymptotically equivalent to constraint based learning, but over finite itera-
tions, they behave differently.

For parametric structure learning, we:

• Make strong additional assumptions on P(V⃗), and

• Orient edges using the assumptions.

Some examples are additive noise models or having structural learning as classification.

Example VIII.6.2. Intuition of Score Based Learning.

Consider the following DAGs:

A B C A B C

Figure VIII.7. Two DAGs, true (left) and proposed (right).

By assuming faithfulness, we have in the true graph that:

Aq C and A 6 qC | B,

whereas for the proposed graph, we have:

A 6 qC and Aq C | B,

Therefore, we may conclude that the proposed graph does not fit the data well. ⌟
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Hence, we want to assess the data fit using the log likelihood for DAG models.

Recall that the DAG factorization is:

P(V⃗) = ∏
Vi∈V⃗

P
(
Vi | paG(Vi)

)
.

Setup VIII.6.3. Decomposable Likelihood.

We assume that the models were on P(Vi | paG(Vi); αi) for each Vi ∈ V⃗, then for a dataset [D]n×k and
α⃗ = {αi | Vi ∈ V⃗}, the log likelihood is:

logL[D] (⃗α) =
n

∑
j=1

k

∑
i=1

log P
(
V j

i | paj
G(Vi); αi

)
.

Then we can fit each αi separately on part of data that involves P
(
Vi | paG(Vi)

)
. ⌟

Example VIII.6.4. Decomposable Likelihood for Score Based Learning.

Referring to the situation in Figure VIII.7, the left is the true graph and the right is the proposed, their
likelihoods are respectively:

Ll
[D](α) =

n

∑
j=1

[
log P(Aj; βA) + log P(Bj | Aj, Cj; βB) + log P(Cj; βC)

]
,

Lr
[D](α) =

n

∑
j=1

[
log P(Aj | Bj; βA) + log P(Bj | Cj; βB) + log P(Cj; βC)

]
.

Here, we pick α⃗ and β⃗ to maximize log likelihood, and we may compare the result. The true graph will
have a higher likelihood value. ⌟

VIII.7 Bayesian Information Criterion Score

However, there are issues with only using the likelihood, there could be overfitting issues.

Example VIII.7.1. Counterexample of Overfitting in Score Based Learning.

Alternatively, we consider the following DAGs:

A B C A B C

Figure VIII.8. Two DAGs, true (left) and proposed (right).

Here, their respective likelihoods are:

Ll
[D](α) =

n

∑
j=1

[
log P(Aj; βA) + log P(Bj | Aj, Cj; βB) + log P(Cj; βC)

]
,

Lr
[D](α) =

n

∑
j=1

[
log P(Aj | Bj, Cj; βA) + log P(Bj | Cj; βB) + log P(Cj; βC)

]
.

Here, the right model will fit the data better.
Although the left model is the true one, it is {P(A, B, C) | A q C}, but the right model is {P(A, B, C)}
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without constraints. The left model is a submodel of the right so it will be strictly more restrictive and fit
the data less. ⌟

If simply using the likelihood to score the models, the highest scoring model is always the complete graph,
which is similar to overfitting in machine learning. Suppose the true graph is sparse, the complete graph
would have too many parameters. The fit would be well but it is not capturing the true structure of the
problem. Hence, we want to punish too many parameters.

Definition VIII.7.2. Bayesian Information Criterion Score.

The Bayesian Information Criterion (BIC) score is a number assigned to a DAG and parameterization
α⃗ = {αi | Vi ∈ V⃗} for all Markov factors:

BIC = −2 logL[D] (⃗α) + m log n,

where n is the number of data points in [D] and m is the number of parameters. ⌟

Since we have the minus sign for the likelihood, so low BIC is good, i.e., we prefer models with low scores.
This is similar to a regularization, but over graph structures.

Also, we are using BIC to select models since as n→ ∞, BIC does sensible things.

Proposition VIII.7.3. Properties of BIC.

Suppose G∗ is the true DAG, BIC has the following properties:

(i) If G1 is an edge supergraph of G∗ and G2 is not. Then G∗ is a submodel of G1 model but not submodel
of G∈, then BIC gives a better score to G1 than G2.

(ii) If G1 and G2 are both edge supergraph of G∗, but G1 has fewer parameters than G2, then BIC gives a
better score to G1 than G2. ⌟

With the above properties, if we choose the correct parameter families for P(Vi | paG(Vi); αi), then BIC
will find the class of true graph (up to equivalence) eventually.

Note that using BIC requires computation of the following:

• List all DAGs on k vertices.

• Compute BIC score for each DAG.

• Pick the best scoring DAGs.

Although it guarantees accuracy, it is on the assumption of unbounded computing resources. The number
of DAGs are O(2k), and the problem becomes intractable for larger DAGs.

In general, the problem is NP-hard, so we need to make further assumptions.
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VIII.8 Local Search of DAG Structure

Of course, we may assume that the true DAG is sparse, but the space of all sparse DAGs is still large, so
we need to think of ways to search locally.

Remark VIII.8.1. Intuitions to Local Search.

The idea of local search is just like making game-playing programs. Here we have a big undirected graph
(as search space), the vertices are states (game positions), and the edges are neighboring states (game
position reachable from current one by one move).
Here, each state has a value, and in order to explore the space, we look for a good state. ⌟

Just liking playing chess, the computer is performing better since:

• Uses discrete search and clever ways of assigning values to positions,

• Has big opening database and endgame database, and

• Has powerful computers to search quickly.

Setup VIII.8.2. Local Search in DAG.

For us, the search space states are all DAGs.

• We define local moves to be able to reach any DAG from any other DAG.

• We want a clever algorithm to find the best state (DAG) using a (polynomial) sequence of moves.

A key for local move is to not move to a graph that is observational equivalent, rather we want the move
to be in the quotient space. ⌟

Algorithm VIII.8.3. Greedy Equivalence Search Algorithm.

(i) We start with a graph with no edges.

(ii) Then we pick the best new class after adding a single edge to current class.
Note that the addition of the edge should move the class to be a different class.

(iii) Repeat the previous step until there are no score improvement.

(iv) Then, pick the best new class after removing a single edge to the current class.

(v) Repeat the previous step until there are no score improvement.

Then the class we have is the result to return. ⌟

Theorem VIII.8.4. GES Completeness, Chickering.

Under faithfulness, as n→ ∞, GES cirrectly identifies the true equivalence class. ⌟
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Hence, as we have indefinite computing resources, GES is proven to be correct.

Remark VIII.8.5. Some Issues with Local Search Algorithm.

Still BIC and GES are large sample results, they exhibits that:

• With finite data, all bets are all.

• Also, the local search is still intractable if the score cannot be evaluated in polynomial time.

• If we get the models P(Vi | paG(Vi); αi) wrong, all the bests are off.

• The model cannot be used when p � n, that is there are way more variables than the number of
samples. (In particular, there are many p� n problems for genomics and social networks.)

• There needs to be sparsity ideas to make progress, and it is also assuming that there is no hidden
variables. ⌟

IX Dimension Reduction

Previously, we discussed about the curse of dimensionality which leads to problems for prediction and
estimation methods.

In previous attempts, we have tried the following to reduce dimensions:

• Regularization: assume that simpler models can do well even in high dimensional data, and

• Model selection: select a parsimonious hypothesis class.

Another approach is to explicitly transform high dimensional data into a lower dimension representation
that preserves features salient for analysis.

IX.1 Principal Component Analysis

When transforming data, we want to use an affine transformation so it is zero centered (this is trivially by
moving the ellipse of points so its is centered at origin). For ellipses, we can ignore the shorter of ellipse
axes and compress the data with a lower dimension.

Here, we may want to use a matrix to handle the data, such as stretching, rotating, or reflecting a vector
in the Euclidean space.

Definition IX.1.1. Eigenvalues and Eigenvectors.

Suppose [A] is a linear map (or k-by-k matrix in this context), for some nonzero vector v⃗, it stretches or
compresses the vector, i.e.:

[A].⃗v = λv⃗,
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and here v⃗ is an eigenvector of [A] and λ is its corresponding eigenvalue. ⌟

Theorem IX.1.2. Diagonalization.

For a k-by-k matrix [A], it has at most k eigenvalues, and a classical decomposition is diagonalization, or
eigendecomposition, where we have:

[A] = [Q][Λ][Q]−1,

where [Q] as the columns as eigenvectors and [Λ] is a diagonal matrix with eigenvalues, that is:

[A] =
(

v⃗1 v⃗2 · · · v⃗k

)


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λk


(

v⃗1 v⃗2 · · · v⃗k

)−1
.

⌟

Here, we may consider [A] as a function that moves vectors, and the eigenvectors are the coordinate axes
for what [A] is doing.

Algorithm IX.1.3. Principal Component Analysis.

Given a dataset [D] of (n rows and k columns) on variables X⃗ = (X1, · · · , Xk), we do the following:

(i) Estimate the vector of means:

µ⃗ =

(
1
n ∑

i
xi1,

1
n ∑

i
xi2, · · · ,

1
n ∑

i
xik

)
.

(ii) Then, we zero-center the data, that is to calculate a new dataset [D̃] by subtracting µj from each
realization of Xj in [D].

(iii) Calculate the empirical covariance matrix:

Ĉ =
1

n− 1
[D̃]∗[D̃].

We are using conjugate transpose, but for the simplicity of real numbers, it becomes the transpose only.

(iv) Then, we compute the eigendecomposition of Ĉ, that is:

Ĉ = [V][Λ][V]−1.

(v) Then, we sort the matrix [Λ] and the corresponding vectors in [V] in decreasing order of magnitude
of eigenvalues.

(vi) Pick the m < k largest eigenvalues, and construct a k-by-m submatrix [V]m of [V] with the corre-
sponding eigenvectors.

Eventually, we can project the center data as [D′] = [D̃][V]m, so we reduce a n by k dataset to n by m
dataset. ⌟

Here, we can consider the covariance matrix Ĉ as a map – it moves vectors around. In particular, it gives
a linear map view of data variability. Moreover, the eigenvectors of Ĉ tell us the axes of this variability
with corresponding eigenvalues telling us how big the movement is in a particular axis direction.
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As PCA picks m largest eigenvalues, it is picking the largest directions of movements and applies a linear
transformation of the data so those directions are preserved (like a projection).

A side note is that we cannot map any one feature in the transformed dataset [D′] back to one feature
of the original centered data [D̃] since each new feature is now a linear combination of all the original
features.

Example IX.1.4. Eigenfaces.

An example that eigendecomposition PCA works is the eigenfaces example, PCA was applied to a set of
black and white images of faces. The original data has:

256︸︷︷︸
grayscale

× 64× 64︸ ︷︷ ︸
pixels

,

and a good subsequent performance could be achieved even in dimension 16. ⌟

Remark IX.1.5. PCA as Data Preprocessing Tool.

PCA is often used as a preprocessing step for other methods that rely on distances, such as clustering
k-nearest neighbors, which does not work with high dimensions. The PCA often significantly improves
performance of such method with reduced features. ⌟

The PCA method also has some disadvantages:

• There is not clear cutoff of how to choose discarding eigenvalues.

• The PCA, based on the covariance matrix, is a fairly limited view of the data in general.

• It is capturing every interesting thing only in special cases, such as multivariated Gaussian data. In
general, simple methods like PCA cannot capture everything about the data.
Analogically, in classification problems with linear classifiers, such as perceptron or SVM do not
work well when it is not linear. But in SVM, there are kernel tricks to get around.

IX.2 Kernelizing PCA

Recall the dual form in SVMs, it allows us to extend to nonlinear cases, and we want to apply the same
case to PCA.

Algorithm IX.2.1. Kerneling PCA.

The PCA algorithm finds all eigenvalues at once and apply diagonalization, but in fact, modern efficient
methods find the eigendecomposition iteratively by finding the largest eigenvalue and project out the
corresponding eigenvector and repeats.

(i) Start with a guess v⃗0, we apply the following update rule:

⃗vt+1 =
Ĉv⃗t

‖Ĉv⃗t‖
.
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(ii) We repeat the update rule until no change is detected. This will find an eigenvector ˆvλ1 correspond-
ing to λ1.

(iii) Then, we project out v⃗λ1 by replacing each row x⃗i in [D] by:

x⃗i
(t+1) = x⃗i

(t) − v⃗λ1(x⃗i
⊺v⃗λ1)

to yield dataset [D]2 with a new empirical covariance matrix Ĉ2.

(iv) Then we iterate to find the next largest eigenvalue and continue. ⌟

Also, instead of original features x⃗ (1-by-k vector), we want to sue a high dimensional transformation ϕ(x⃗)
(1-by-kϕ vectors, where kϕ � k) like with the SVMs.

Then, we construct a mean centered dataset [D̃] as before, and calculate Ĉϕ as before:

Ĉϕ =
1

n− 1

n

∑
i=1

ϕ(x⃗i)
⊺ ⊗ ϕ(x⃗i).

Then, we need to solve the eigenvalue problem, that is:

Ĉϕv⃗λ = λv⃗λ for the largest λ.

The issue is that Ĉϕ and λ⃗ will match the dimension kϕ of ϕ(x⃗), so we need a better representation.

Algorithm IX.2.2. Optimizing KPCA.

Recall that every eigenvector is a linear combination of transformed observed points, i.e.:

v⃗λm =
n

∑
i=1

αmiϕ(x⃗i)
⊺.

Hence, finding v⃗λm is equivalent to finding λmi for every i. Thus, we define the kernel as:

K(x⃗i, x⃗j) = ϕ(x⃗i)ϕ(x⃗j)
⊺,

which is n-by-n matrix, and if we substitute v⃗λm , we have:

λm

n

∑
i=1

αmiϕ(x⃗i)
⊺

︸ ︷︷ ︸
⃗vλm

=
1

n− 1

n

∑
j=1

ϕ(x⃗j)
⊺ϕ(x⃗j)︸ ︷︷ ︸

Ĉϕ

n

∑
i=1

αmiϕ(x⃗i)
⊺

︸ ︷︷ ︸
⃗vλm

=
1

n− 1

n

∑
j=1

ϕ(x⃗j)
⊺

n

∑
i=1

amiK(x⃗i, x⃗j),

λm

n

∑
i=1

αmiϕ(x⃗l)ϕ(x⃗i)
⊺ =

1
n− 1

n

∑
j=1

ϕ(xl)ϕ(x⃗j)
⊺

n

∑
i=1

amiK(x⃗i, x⃗j),

λm

n

∑
i=1

αmiK(x⃗l , x⃗i) =
1

n− 1

n

∑
j=1

K(x⃗l , x⃗j)
n

∑
i=1

αmiK(x⃗i, x⃗j).

It turns out that we can write:
λm(n− 1)α⃗m − Kα⃗m,

and this is another version of the eigenvalue problem with alternative representation of v⃗λm and Ĉϕ.
In matrix form, we have:

K̃ = K− 2
n
[1]K +

1
n
[1]K

1
n
[1],
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where [1] is a matrix with all entries as 1. ⌟

In summary, we do the following steps:

(i) Choose a kernel K(x⃗i, x⃗j).

(ii) Then, construct a centered kernel matrix of the data:

K̃ = K− 2
n
[1]K +

1
n
[1]K

1
n
[1],

where [1] is a matrix with all entries as 1.

(iii) Find the eigenvalues and eigenvectors of K̃ by solving the eigenvalue problem:

K̃α⃗m = λmα⃗m.

(iv) Scale each eigenvector by multiplying by the square root of the corresponding eigenvalue.

(v) Project the data onto the space spanned by the eigenvectors of K̃.

IX.3 Probabilistic PCA

Previously, we mentioned that an issue with PCA is that it does not have a clear choice of how many
eigenvalues to keep, and a way of making this choice is to express PCA in terms of a probabilistic model
and apply model selection methods.

Remark IX.3.1. Viewing the PPCA.

A probabilistic PCA may be viewed as:

• A hidden variable graphical model,

• A clustering method,

• A density estimation method,

• A dimension reduction method, and

• A missing data model.

⌟

Setup IX.3.2. Full Data Likelihood for PPCA.

Given a set of k variables X⃗, the PPCA assumes the following full data likelihood:

L⃗ ∼ N (⃗0, Id),

X⃗ ∼ N (⃗L · [W]⊺ + µ⃗, σ2 Id),

where L⃗ is a set of q latent variables (q < k), Id is the identity matrix of the appropriate size, [W] is the
matrix of weights, µ⃗ is a mean offset, and σ2 is the variance of every Xi ∈ X⃗. ⌟

In other words, the observed variables X⃗ are assumed to be:
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• Gaussian,

• Independent conditional on a smaller set of latent Gaussian L⃗, which are themselves mutually
independent, and

• X⃗ are all linear combinations of L⃗ via the weight matrix [W].

All the parameters of this model are [W], µ⃗, and σ2, so an alternative representation of X⃗ is:

X⃗ ∼ N (µ⃗, [W][W]⊺ + σ2 Id).

Example IX.3.3. PPCA as Graphical Model.

Consider the PPCA with 5 observed features and 2 latent feature, we can represent it graphically as:

X3X2X1 X4 X5

L1 L2

Figure IX.1. PPCA model represented graphically, with latent Gaussian variables (gray) and observed Gaussian variables (black).

The latent Gaussian variables are independent of each other, and the observed Gaussian variables are
independent given latent state variables.
This is very similar to a mixture model, except that the latent states are real numbers rather than categor-
ical values. ⌟

Then, we would want to find the maximum likelihood estimation for PPCA.

Algorithm IX.3.4. Closed Form Iterative Approach by EM.

Consider the log likelihood for observed data:

logL[D](µ⃗, σ2, [W]) = −n
2

[
k log(2π) + log

(
det

(
[W][W]⊺ + σ2 Id

))
+ tr

(
([W][W]⊺ + σ2)−1Ĉ

)]
,

and the closed form solution for MLE parameter values are:

ˆ⃗µ =
1
n

n

∑
i=1

x⃗i,

σ̂2 =
1

k− q

k

∑
j=q+1

λj,

[Ŵ] = [U]q([Λ]q − σ2 Id)1/2 Id,

where [U]q is a k-by-q matrix with principal eigenvectors of C⃗, and [Λ]q is a q-by-q matrix with eigenvalues
λ1, · · · , λq. ⌟

Algorithm IX.3.5. EM Algorithm for PPCA.

Let the full data likelihood being:

logLfull(µ⃗, σ2, [W]) =
n

∑
i=1

log P(x⃗i, l⃗i),
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which is equal to:
n

∑
i=1

(2πσ2)−k/2 exp

[
−
‖x⃗j − [W ]⃗Ii − ˆ⃗µ‖2

wσ2

]
(2π)−q/2 exp

[
−‖ I⃗i‖2

2

]
.

Here, we have:

• The E step as taking the expectation of each row term w.r.t P(⃗Ii | x⃗i; [W](t), (σ2)(t)), and dropping
terms that do not depend on the model parameters.

• In the M step, we maximize E
[

logL[D]

(
µ⃗, σ2, [W]

)
| [D]; β⃗(t)] w.r.t σ2.

As usual, we repeat until there are no parameter improvements. ⌟

The general EM result earlier applies here, that is, each step will improve the value of the log likelihood.

Remark IX.3.6. Missing Data Problem.

Since we have a model of the full data distribution, we will be able to deal with missing entries if the data
is missing at random (MAR).

• For every row x⃗i containing a set of missing entries z⃗i, simply calculate P(z⃗i | x⃗i) from the full data
distribution P(⃗L, X⃗), which is Gaussian at current parameter guess β⃗(t), and

• Proceed as before to impute new values at each step. ⌟

Remark IX.3.7. Computational Complexity for PCA.

Consider the approaches to solve PCA, we compute the sample covariance, which has runtime O(nk2),
and it is a problem for large k, so we should think of using PPCA.
With the update rule for PPCA, it is ending up as O(nkq), and for a not too large k, the PPCA should be
faster. ⌟

X Reinforcement Learning

Reinforcement learning (RL) is a semi-supervised problem and we want to build an agent that learns to
act by interacting with the environment.

In the process, the agent gets feedback after acting, hence there are supervision, but is often delayed.

For a turn-based game:

• Task: choose the best move given a board position.

• Feedback: win/lose/draw at the end of the game.

• Training: an agent can play a lot of games with copies of itself.
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• Results: a proficient player (matching or exceeding the best human).

For acting in real time environment:

• Task: choose an action at a particular moment in time, given a representation of the environment.

• Feedback: good or bad outcomes.

• Training: agent playing with itself or in different environments.

• Results: Successes in automated machinery.

In general, the schematic of reinforcement learning is to have:

Environment

Agent

state reward action

X.1 Markov Decision Processes

A common model for RL is a Markov Decision Process (MDP).

Setup X.1.1. Setup for Markov Decision Process.

The MDPs contain:

• A set of states S⃗: represent possible situations in the environment an agent might encounter.
This could be a board position in a chess game, namely, si ∈ S⃗.

• A set of actions A⃗: represent possible actions the agent may take at each state.
Sometimes, only a subset of A⃗ is allowed in a particular state si.
This could be a legal move in a board game.

• A state transition distribution P
(
s(t+1) | s(t), a(t), · · · , s(0), a(0)

)
: governs how likely a sequence of

state visits and actions up to time t are to lead to a particular new state at time t + 1.
In an MDP, we make a crucial simplification that:

P
(
s(t+1) | s(t), a(t), · · · , s(0), a(0)

)
= P

(
s(t+1) | s(t), a(t)

)
,

i.e., state transitions obeys Markov property and only depend on the last state and last action taken,
not any prior history.

• A reward function Rak (si, sj): maps a state transition (si, sj) if action ak was taken to a reward rij.
There could be no reward to some (if not most) state transition and action triplets.

Also, note that MDPs assume discrete time, i.e.the agent starts in some state s(0) ∈ S⃗ at time 0, and moves
to other states after choosing to take an action a(0).
The agent eventually finds itself in state s(t) at time t, and chooses to take an action a(t). ⌟

The MDP is an ideal model, it assume that state transition is forgetful, and time is discrete. This might not
be possible in reality.
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Example X.1.2. Represent MDP using Graphical Model.

Consider the following MDP:

Figure X.1. MDP represented as a DAG model.

Here, it has 3 states, 2 possible actions, and the reward functions are only defined for Ra0(s1, s0) = 5 and
Ra1(s2, s0) = −1. There are no rewards for any other triplets. ⌟

Definition X.1.3. Absorbing States.

Assume that we start at some state s(0) ∈ S⃗, in modeling applications like games, we can consider absorb-
ing state as a special state in which once the agent reaches such as state, it stays there forever. This is like
the end of a game like chess. ⌟

Here, assume the upper bound T as the maximum number of time steps to reach absorbing state, the
agent could reasonably maximize expected total reward given a sequence of actions {ai}T

i=0, and we have
the expected reward as:

E

[
T

∑
t=0

Rat
(
s(t), s(t+1))] .

This expectation is w.r.t:

Pa0,··· ,aT

(
s(1), · · · , s(T)

)
=

T

∏
t=1

P
(
s(t) | s(t−1), at

)
.

Setup X.1.4. Infinite Horizon Problem.

To model applications where agents act continuously, there is no specific stopping points, we consider
such as the infinite horizon problem. Then, we have the expected reward as:

E

[
∞

∑
t=0

Rat
(
s(t), s(t+1))] .

However, this raise the problem that the expectation could be divergent, i.e., we have infinite rewards.
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Then, we introduce a discount factor 0 ≤ γ ≤ 1 such that the reward we maximize is:

E

[
∞

∑
t=0

γtRat
(
s(t), s(t+1))] ,

where having smaller γ favors instant gratification over delayed gratification. ⌟

In an MDP the reward depends on the current state, the action taken and the next state we transition to.
At any time t, the agent sees s(t).

Definition X.1.5. Optimal Policies.

The learning problem is to learn a policy π : s(t) → ai that maximizes expected reward (or discounted
expected reward). The optimal policy would be:

π∗ = argmaxπ E

[
T

∑
t=0

Rat
(
s(t), s(t+1))] , or

π∗ = argmaxπ E

[
∞

∑
t=0

γtRat
(
s(t), s(t+1))] .

⌟

This is not a supervised learning problem, since we do not see (s(t), ai) pairs as training data. Hence, we
have to learn indirectly by somehow associating actions with subsequent rewards.

Remark X.1.6. Existence of Optimal Policy.

An optimal policy π∗ is not necessarily unique, but at least one always exists. ⌟

X.2 Value Function and Iteration

As of right now, we consider the infinite horizon problem where we know that state transition probabili-
ties P(s(t+1) | s(t), at).

Definition X.2.1. Value Function.

Given a fixed policy π, we can define the value function for any state si as:

Vπ(si) =
∞

∑
t=0

E

[
∞

∑
t=0

γtRat
(
s(t), s(t+1))] ,

where s(0) = si. ⌟

In other words, if we are at state si, the value function Vπ(si) will tell us the expected reward of following
the policy π from the point on. If we we know the value function for a fixed policy π, we could choose
the π that gives us the largest expected reward.

Then, we want to learn how we can learn value functions, we let V∗(s0) denote the value function for an
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optimal policy π∗ staring at s0, then we have the following recursive definition:

V∗(s0) = E
[
Ra0=π∗(s0)

(s0, s(1))
]︸ ︷︷ ︸

expected reward from taking optimal action at s0

+ γE
P
(

s(1) |s0,a0=π∗(s0)
)[V∗(s(1))]︸ ︷︷ ︸

discounted expected reward of following π∗ afterwards

.

Algorithm X.2.2. Value Iteration.

Hence, this suggests a recursive algorithm for learning V∗(s) for s ∈ S⃗.

(i) We set V(0)(s) = 0 for all s ∈ S⃗.

(ii) For t = 1, 2, · · · , for each s ∈ S⃗, and for each a ∈ S⃗, we compute:

Q(t)(s, a) = ∑
s(t)∈S⃗

Ra(s, s(t))P(s(t) | s, a) + γ ∑
s(t)∈S⃗

V(t−1)P(s(t) | s, a).

Then, we assign maxa Q(t)(s, a) to V(t)(s).

Then, as t→ ∞, we have V(t)(s) converging to V∗(s) for each s ∈ S⃗. ⌟

One note of the iterative method is that it involves dynamic programming, i.e., memorizing sums of
rewards over many possible trajectories by a state/action index, assuming we know:

P(s(t+1) = sj | s(t) = si, ak) and Rak (si, sj) for all si, sj ∈ S⃗, ak ∈ A⃗.

If there are a lot of states, it would be difficult to specify in advance what all the transition probabilities
and rewards are.

Alternatively, we can learn them by repeatedly navigating the environment.

Setup X.2.3. Motivation to Learning Q Function.

Recall that we have learning with the Q function:

Q(t)(s, a) = ∑
s(t)∈S⃗

Ra(s, s(t))P(s(t) | s, a)︸ ︷︷ ︸
expected reward for doing action ak in state si

+ γ ∑
s(t)∈S⃗

V(t−1)P(s(t) | s, a)︸ ︷︷ ︸
expected discount reward of using the optimal policy π∗ after

.

Therefore, we want to learn Q(si, ak) directly, without knowing transition probabilities and rewards in
advance, provided the environment supplies them as we explore it.
The key of this is the relationship between the Q function and the value function. ⌟

If we know Q(s, a) for every s ∈ S⃗ and a ∈ A⃗, we could choose the optimal policy as π∗(s) = argmaxa Q(s, a).
Assume that all state transitions are deterministic, we can learn Q(s, a) directly by noting that:

Q(Si, ak) = Rak (sI , sj)︸ ︷︷ ︸
determinism

+ ∑
sj∈S⃗

γV∗(sj)P(sj | si, ak)

= Rak (sI , sj) + ∑
sj∈S⃗

γ
(

max
a

Q(sj, a)
)

P(sj | si, ak).

This suggests a similar algorithm for learning Q function Q(s, a) as we had for value functions V∗(s).

Algorithm X.2.4. Learning Q Function for Deterministic Case.

We have the following algorithm on Q learning with deterministic case:
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(i) Initialize Q̂(s, a) = 0 for all s ∈ S⃗ and a ∈ A⃗, and let the discount factor γ be fixed.

(ii) For t = 1, 2, · · · :

• In current state si, somehow pick an action a.

• Execute action a, deterministically transition to state sj and receive reward Ra(si, sj).

• Update Q̂(si, a) as:
Ra(si, sj) + γ max

ã
Q̂(sj, ã).

• Set the current state to sj. ⌟

It turns out that this simple algorithm is enough, i.e., ˆQ(s, a) converges to Q(s, a) for all s ∈ S⃗ and a ∈ A⃗
provided each state and action pair occurs infinitely often.

It is possible to show that maxã Q̂(sj, ã) converges to V∗(sj), which suffices to show that Q̂(si, a) converges
to Q(si, a) by definition.

Algorithm X.2.5. Q Learning for Non-deterministic Case.

We have the following algorithm on Q learning with non-deterministic case:

(i) Initialize Q̂(s, a) = 0 for all s ∈ S⃗ and a ∈ A⃗, and let the discount factor γ be fixed.

(ii) For t = 1, 2, · · · :

• In current state si, somehow pick an action a.

• Execute action a, non-deterministically transition to state sj and receive reward Ra(si, sj).

• Update Q̂(si, a) as:

(1− α(t))(si, a) + α(t)
(

Ra(si, sj) + γ max
ã

Q̂(sj, ã)
)

,

where α(t) = 1
1+# times (s, a) was visited .

• Set the current state to sj. ⌟

It turns out that this simple algorithm also result in ˆQ(s, a) converges to Q(s, a) for all s ∈ S⃗ and a ∈ A⃗
provided each state and action pair occurs infinitely often.

Remark X.2.6. Tradeoffs on Q Learning.

Recall that in the Q learning algorithm, given the current state si, we somehow picked an action a.
If the agent has been exploring the environment for a while, there comes to be tradeoffs: we may know
some actions lead to sure thing rewards, but we may also have some actions that lead to underexplored
regions of the space which could contain greater rewards.
This is known as the exploration/exploitation tradeoff:
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• ϵ-greedy exploration (model-free):
We set a parameter ϵ that goes to 0 as the agent explores. In every state s, choose a random action
with probability ϵ, and choose the best currently known action with probability 1− ϵ, so it is likely
to explore the unexplored actions.

• Thompson sampling (model-based):
We learn a probability model that estimates the probability P∗a,s that the action a maximizes expected
reward in state s. Then, at each state s, we choose the action a with highest probability P∗a,s. ⌟

If the set of (s, a) is very large, they can no longer be represented as a table. Here, we would try to incre-
mentally learn a model, using f implemented as a big neural network.

Algorithm X.2.7. Model Based RL.

We have the following algorithm modified from Q learning, with implementation of model f : s 7→(
a, Q̂(s, a)

)
:

(i) Initialize the model parameters ˆ⃗β in f , and let the discount factor γ be fixed.

(ii) For t = 1, 2, · · · :

• In current state si, evaluate f (si;
ˆ⃗β) to yield a set of action/Q function pairs:(

a1, Q̂(si, a1)
)
, · · · ,

(
ak, Q̂(si, ak)

)
.

• Then, we somehow pick an action a.

• Execute action a, non-deterministically transition to state sj and receive reward Ra(si, sj).

• We here modify ˆ⃗β in g by providing the outcome
(
amQ̂(t+1)(si, a)

)
.

• Set the current state to sj. ⌟

The algorithm is fundamentally the same as Q Learning, but its uses tricks to yield powerful models.


