
EN.601.482 : Machine Learning: Deep Learning

Notebook

James Guo

Spring 2025

Contents

I Supervised Learning with Univariate Linear Models 1
I.1 Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.3 Generalized Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
I.4 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
I.5 The Perceptron (1957) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II Multiple Features Supervised Learning Model 6
II.1 Feature Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
II.2 GLMs with Multiple Features and Output Dimensions . . . . . . . . . . . . . . . . . . . . . . 6
II.3 Categorical Regression, aka, Multi-Class Classification . . . . . . . . . . . . . . . . . . . . . . . 7
II.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
II.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

III Feedforward Neural Network 10
III.1 Adaptive Features and Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
III.2 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
III.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
III.4 Training a Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
III.5 Back Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
III.6 Vectorized Implementation of Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . 14
III.7 Skip Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
III.8 Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
III.9 Batch and Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
III.10Capacity Control for Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

IV Stochastic, Adaptive Optimizers 18
IV.1 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
IV.2 Adaptive Moment Estimation (ADAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
IV.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

V Recurrent Neural Network (RNN) 20
V.1 Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
V.2 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
V.3 Long Short-Term Memory (LSTM) Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 22



Machine Learning: Deep Learning Notebook 2

V.4 Gated Recurrent Units (GRUs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
V.5 Attention Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
V.6 Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

VI Unsupervised Learning and Deep Generative Model 31
VI.1 Unsupervised Learning with Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VI.2 Deep Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
VI.3 Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Acknowledgements:

• This notebook records the course contents for EN.601.482 Machine Learning: Deep
Learninginstructed by Dr. Eric Nalisnick at Johns Hopkins University in the Spring 2025
semester.

• The notes is a summary of the lectures, and it might contain minor typos or errors. Please
point out any notable error(s).



Machine Learning: Deep Learning Notebook 1

I Supervised Learning with Univariate Linear Models

I.1 Predictive Modeling

The goal is to have predictive modeling.
The features are x ∈ X , which are the inputs while X is the space of all possible inputs.
The labels are y ∈ Y are the dependent variable, which is a response to the input feature.

We want to generate a function f : X → Y that maps x to y. This is called a deep neural network.

A question to propose is how do we know if the above f is a good fitting?

• We think about the data generating process. Our features are generated as x ∼ P(X ) and labels as
y ∼ P(Y | X ).

• However, these labels are unknown. We want our predictive model to match these distributions,
i.e., f (x) ∼ P(y | x).

• Note: Here, P is the distribution we don’t know but exists. The label could be discrete categories or
real numbers.

In our structure, we will have:

• Training data, D := {(xn, yn)}N
n=1, where xn ∼ P(X ) and yn ∼ P(Y | xn), i.e., the feature data is

consisted of N pairs.

Here, we think about x, y ∈ R, we can define a univariate linear regression model by f (x; w) = w · x.

X

Y

Figure I.1. Linear Model of L(R, R).

Here, w is determined by the data.

To evaluate, we shall think about the loss function.

• A predominant loss function is the squared loss function, that is:

ℓ(w;D) = 1
N

N

∑
n=1

ℓ(w; xn, yn) =
1
N

N

∑
n=1

(
f (xn; w)− yn

)2.
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– Note: This loss function assumes that we are trying to minimize the deviations without consid-
eration of the set.

To optimize a loss function, we want to find w∗ as:

w∗ = arg min
w

ℓ(w;D) = arg min
w

=
1
N

N

∑
n=1

(
w · x︸︷︷︸

f (xn ;w)

−yn
)2.

To minimize, the minimum is when the derivative is zero.

1. Take the derivatives:

d
dw

ℓ(w;D) = d
dw

[
1
N

N

∑
n=1

(w · xn − yn)
2

]

=
2
N

[(
N

∑
n=1

wx2
n

)
−
(

N

∑
n=1

ynxn

)]

2. Then, we set the derivative to 0 and solve for w, that is:

0 =
d

dw
ℓ(w;D) = 2

N

[(
N

∑
n=1

wx2
n

)
−
(

N

∑
n=1

ynxn

)]
,

w∗ = ∑N
n=1 yn · xn

∑N
n=1 x2

n
.

Now, we have trained our first model.

Consider the vectorized version, we shall utilize the Graphics processing unit (GPU), that is more efficient
over linear algebra, were we consider:

x =
[

x1 x2 · · · xn

]⊺
,

y =
[
y1 y2 · · · yn

]⊺
,

so that we have:
w∗ =

〈x, y〉
‖x‖2 = np.dot(x,y) / np.linalg.norm(x) ** 2.

I.2 Maximum Likelihood Estimation

Statistical Divergences is like a loss function but applied to probability distributions. One of the most
common one is the Kullback-Leibler divergence (KLD):

KLD [p(z) || q(z)] := Ep(z)

[
log

p(z)
q(z)

]
=
∫

z
p(z)

(
log

p(z)
q(z)

)
dz where z is the random variable in interest.

• Note: KLD [p(z) || q(z)] is not necessarily equal to KLD [q(z) || p(z)], it is not commutative.
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Here, we consider the predictive models as distributions, that is:

P
(
y; θ = f (x)

)
.

• E.g., we consider the normal distribution N (y; µ, σ2), what we are claiming is that for each y, our
prediction falls as a normal distribution around it.

Then, we think about the maximum likelihood estimation (MLE), that is:

KLD
[
P(y | x) || P(y, θ = f (z))

]
= EP(y|x)

[
log

P(y | x)
P
(
y; θ = f (x)

)]
= EP(y|x) [P(y | x)]︸ ︷︷ ︸

−H[P(y|x)]

−EP(y|x)
[
P
(
y; θ = f (x)

)]
= EP(y|x)

[
− log P

(
y; θ = f (x)

)]
−H[P(y | x)].

Here, we have H as the entropy of the true distribution.

Here, we consider the optimization as:

w∗ = arg min
w

EP(x)EP(y|x)
[
− log P

(
y; θ = f (x)

)]
−H[P(y | x)]︸ ︷︷ ︸

constant

.

Again, the expectations are still not in closed form, so we need to consult with the Monte Carlo Approxi-
mation, that is:

EP(x)[ϕ(x)] ≈ 1
S

S

∑
s=1

ϕ(xs), where xs ∼ P(x) where S is the number of samples.

Then, we can consider the final form of the approximation as:

w∗ = arg min
w

EP(x)EP(y|x)
[
− log P

(
y; θ = f (x)

)]
−H[P(y | x)]︸ ︷︷ ︸

constant

≈ arg min
1
N

N

∑
n=1
− log P

(
yn; f (xn; w)

)
.

Now, the obstacle is that the model would not be good when N is small, i.e., with limited amount of data,
we cannot have a perfect approximation.

In such case, we may derive the squared error as maximum likelihood:

w∗ = arg min EP(x)KLD [P(y | x) || p(y; f (x; w))]

= arg min
w

EP(x)EP(y|x)[− log p(y; f (x; w))]

≈ 1
N

N

∑
n=1
− log p(yn, f (xn; w)). (eq1)
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Here, we assume that this is a normal distribution with mean being the function, so:

eq1 = arg min
1
N

N

∑
n=1
− logN (yn; µ = f (xn; w), σ2)

= arg min
1
N

N

∑
n=1
− log

[
1

σ
√

2π
exp

(
−1

2
(yn − f (xn; w))2

σ2

)]

= arg min
1
N

N

∑
n=1

log(σ
√

2π) +
1
2
(yn − f (xn; w))2

σ2

= arg min
1
N

1
2σ2

N

∑
n=1

(
yn − f (xn; w)

)2.

I.3 Generalized Linear Model

Then, we shall think about the generalized linear models.

• Check the support of y ∈ Y, for example, is it real, binary, counts, or etc.

• Choose the distribution p(y; θ) that agrees with the support.

• Parametrize our model, with Ep[y | x] = g−1( f (x; w)
)
= g−1(w · x), where g−1 is the inverse link

function.

An example is with binary data, say y ∈ {0, 1}.

• We pick the Bernoulli distribution with p(y; π) = πy(1− π)1−y.

• Note that E[y | x] = π = g−1( f (x; w)) = g−1(x ·w), where w ∈ R, we need g−1 : R → (0, 1), say the
logistic function (or sigmoid):

g−1(z) =
1

1 + exp(−z)
.

This is the CDF for logistic.

Again, we want to have:

w∗ = arg min
w

EP(x)KLD
[
P(y | x) || B(y, π = g−1( f (x; w)))

]
= arg min

w

1
N

N

∑
n=1
− logB(yn, πn = logistic( f (xn; w)))

= arg min
w

1
N

N

∑
n=1
− log

[
π

yn
n (1− πn)

1−yn
]

= arg min
w

1
N

N

∑
n=1
−yn log πn − (1− yn) log(1− πn)

= arg min
w

1
N

N

∑
n=1
−yn log(logistic(xn, w))− (1− yn) log(1− logistic(xn, w)).

(called binary entropy loss)
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As always, we take the derivative as:

∂wℓ(w;D) = ∂w

[
1
N

N

∑
n=1
−yn log(logistic(xn, w))− (1− yn) log(1− logistic(xn, w))

]

=
1
N

N

∑
n=1
−yn∂w log(logistic(xn, w))− (1− yn)∂w log(1− logistic(xn, w))

=
1
N

N

∑
n=1

[−yn(1− logistic(xn; w)) + (1− yn)logistic(xn; w)]xn

=
1
N

N

∑
n=1

(
logistic(xn · w)− yn

)
· xn.

I.4 Gradient Descent

Given some function we wish to minimize, say ϕ(z), a strategy we can do is:

• pick an initial value z0,

• iterate the equation zt+1 = zt − α · d
dzt

ϕ(zt), where α ∈ R+ is the step size.

• stop when
∣∣∣ d

dz ϕ(z)
∣∣∣ ≤ ε (like 1× 10−4) or maximum number of iterations are reached.

Note that the step size α is important, the convergence gets slower (or even fails to converge) when the
step size is too small or too large.

I.5 The Perceptron (1957)

Consider ŷ = ψ(w · x + b), where w, b ∈ R and x ∈ R is the feature. We have:

ψ(z) = −1 + 2 · 1[z > 0].

In particular, we have the indicator function, i.e.:

• If x · w > −b, then ŷ = +1, and

• if x · w < −b, then ŷ = −1.

Inputs: D = {(xn, yn)}N
n=1, w0, and b0.

for t← 1, 2, · · · , T do
Pick random pair from D, say (xr, yr).
Compute the prediction ŷr = ψ(w0 · xr + b0), and checked on correctness.
if the prediction is not correct, i.e., ŷr 6= yr then

Update the parameters: wt+1 ← wt + yr cot xr, bt+1 = bt + yr.
end if

end for
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We may also modify the logistic regression, with one data point per update, assume α = 1 and assume
logistic(w · x) ∈ {0, 1}.
There, the update is:

wt = wt−1 +
(
y− logistic(x · wt−1)

)
· x.

II Multiple Features Supervised Learning Model

II.1 Feature Expansions

Consider multiple features of (x1, · · · , xD) ∈ RD and (w1, · · · , wD) ∈ RD, we have:

Ep[y | x] := g−1(w⊺x).

An example is to add a bias/offset parameter, we consider:

w̃ =

[
w0

w

]
and x̃ =

[
1
x

]

Now, as we consider polynomial regression, we take scalar feature x and replicate it by taking higher and
higher powers of x. Consider x ∈ R, we now have:

x̃ =
[

x0 x1 · · · xk
]⊺

,

and when we consider this, we have:

E[y | x̃] = g−1(w⊺x̃) = g−1

(
K

∑
k=0

wk · xk

)
.

For the steepest decent with multi-variate derivatives (say f : RD → R), it needs gradient operator as:

∇x f (x) =
[

d f
dx

]⊺
=
[

∂ f (x)
∂x1

· · · ∂ f (x)
∂xD

]
Then, the gradient descend it now:

wt+1 = wt − α
[
∇wkℓ(wt;D)

]⊺ .

An example could be with the logistic regression, that is:

∇wℓ(w;D) = ∇w

[
1
N ∑

n
−yn log [s(w⊺xn)]− (1− yn) log [1− s(w⊺xn)]

]
=

1
N

N

∑
n=1

[
s(w⊺xn)− yn

]
· x + n⊺.

II.2 GLMs with Multiple Features and Output Dimensions

Consider that:
E = [y | x] := g−1(W⊺x),

where we have x = (x1, · · · , xD) ∈ RD, w =
[
w1 · · · wk

]
∈ RD×k.

One example is with the real-valued regression problem, say y ∈ Rk, and with E[y | x] = w⊺x, under the
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assumption p(y, µ = w⊺x, Σ = σ2 Id), we have:

ℓ(w;D) = 1
N ∑

n

K

∑
k=1

(yn,k − w⊺
k xn)

2.

II.3 Categorical Regression, aka, Multi-Class Classification

Labels are with one-hot encoding, e.g. yn =
[
0 0 1 0

]⊺
.

The distribution is:

P(yn; πn) = categorical(y, π) =
K

∏
k=1

π
yn,k
k = πk.

In particular, we have π ∈ [0, 1]K.

For the GLM for categorical regression, we have:

E[y | x] = π = g−1(w⊺x)/

Such inverse link function is called the soft-max function:

softmax(z) :=
exp(zk)

∑k
j=1 exp(zj)

.

This is really a soft argmax function, as it keeps the argument related to link.
Consider the categorical cross-entropy loss as:

W∗ = arg min
W

EP(x)[KLD [P(y | x) || categorical(y, π = softmax(W⊺x))]]

≈ arg min
W

1
N

N

∑
n=1
− log

[
K

∏
k=1

π
yn ,k
n,k

]
= · · · (intermediate steps ommitted due to lengthiness)

= arg min
W

1
N

N

∑
n=1

K

∑
k=1
−yn,k ·

[
w⊺

k xn − log

(
K

∑
j=1

exp(w⊺
j xn)

)]
.

To find a solution, we use the gradient descent method, in various cases.

• Case 1: Let yn,k = 1, we have:

∇Wkℓ(D; W) =
1
N

N

∑
n=1
∇Wk

K

∑
k=1
−yn,k ·

[
w⊺

k xn − log

(
K

∑
j=1

exp(w⊺
j xn)

)]

=
1
N

N

∑
n=1
−∇Wk

[
w⊺

k xn − log

(
K

∑
j=1

exp(w⊺
j xn)

)]

=
1
N

N

∑
n=1
−
[

x⊺n −
exp(w⊺

k xn)

∑K
j=1 exp(w⊺

j xn)
· x⊺n

]
=

1
N

N

∑
n=1

(πn,k − 1) · x⊺n.

Note that since we have chosen a good link function, it is giving a clear derivative.
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• Another case we concern is when yn,i = 0, we have:

∇Wkℓ(D; W) =
1
N

N

∑
n=1
∇Wk

K

∑
k=1
−yn,k ·

[
w⊺

k xn − log

(
K

∑
j=1

exp(w⊺
j xn)

)]

=
1
N

N

∑
n=1
−∇Wk

[
w⊺

k xn − log

(
K

∑
j=1

exp(w⊺
j xn)

)]

=
1
N

N

∑
n=1
−
[
−

exp(w⊺
k xn)

∑K
j=1 exp(w⊺

j xn)
· x⊺n

]
=

1
N

N

∑
n=1

πn,k · x⊺n.

Note that when implementing this, we do not have to split the case since the both cases can be πn,k − yn,i,
and yn,i is the indicator variable.

For the output π̂ = softmax(w⊺x), we may consider the classifier as a vector valued so that we take the
entry with highest classification value.

II.4 Model Evaluation

Recall that the goal is having P(y | x) ≈ p
(
y, f (x)

)
when we only have the data D{(xn, yn)}N

n=1 and
(xn, yn) ∈ P(x; y).

Our idea is to have:

• Train on D → w∗, and

• Evaluate ℓ(w∗,D) = δ.

The problem is that it has seen all the points from D. The solution turns out to be:

• Split the data with training (learn the task, ∼ 70%), validation (select the best model, ∼ 20%), and
test data (how good is this model truly, ∼ 10%).

A method is called the k-fold cross validation. In this case, we have the data set split into training data
and testing set. For the training data, we can do a k-fold, in which each training data contain a certain
part as the validation set.

For example, we have the real-valued regression that:

ℓ
(
w∗,Dtest

)
=

1
M

M

∑
n=1

(E[yn | xn]︸ ︷︷ ︸
w∗xn

−yn)
2.

For the root mean square error, we have:

RMSE
(
w∗,Dtest

)
=

√√√√√ 1
M

M

∑
n=1

(E[yn | xn]︸ ︷︷ ︸
w∗xn

−yn)2.
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The classification is a little bit different that is:

Acc
(
{E[ym | xm]}M

m=1, y
)
= Acc

(
w∗,Dtest

)
=

1
M

M

∑
n=1

1[yn − arg max πn].

With the learning algorithm, we train models from the training data, then with the model parameters, we
use validation data to have the validation metric, and as long as it is good, the model could be deployed
to the world with test data.

It is important to be careful of how many times we shall re-use validation sets. Not to memorize the data set.

The above is with accuracy, and we later consider precision.

We can consider a confusion matrix:

Spam Non-spam

Span True positive False negative
Non-spam False positive True negative
Table II.1. Columns are actual and rows are predicted.

This, of course can be extended to cases with more estimates.

The precision is:

Precision(k; C) =
TP

TP + FP
=

Ck,k

∑K
j=1 Cj,k

.

We consider the recall as:
Recall(k; C) =

TP
TP + FN

=
Ck,k

∑K
j=1 Ck,j

.

The Macro-Precisions and Macro-Recall are the average of each C.

F1 score is the harmonic mean fo the precision and recall, so it is more sensitive to the smaller of the two
values.

F1(C) =
2

1
Macro-Precision(C) +

1
Macro-Recall(C)

.

There are different sources of variations, like:

• number of data points in the training set.

II.5 Regularization

Now, the problem is considering overfitting and underfitting. We want a good fit.
Models have two important properties:

• Bias: The flexibility of the model class, the ability to represent true function (like degree 1 and 10).

• Variance: The variance is how much the model is fluctuating within the model itself.
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Consider the small N, the high bias model is usually better, since the high variance models will overfit
the training data. For a large N, consider the low bias model since it takes advantage of higher quality
statistical signal.

Then, we need to combat with variance:

• Regularization: add a penalty term to encourage simple model.

– L2 or Ridge penalty:

ℓ̃(w,D) = ℓ(w,D) + λ
D

∑
d=1

w2
d.

It depend on the choice if we penalize the offset term, like, is our data centered?

– Consider the sum as a ℓp norm, we can have other penalties.

• Ensemble Method: aggregate the predictions of multiple models. The core idea is that if the vari-
ances in each model is uncorrelated, then the noise cancels out with just the signal.
With the high flexibility models, we can try to reduce the variance by doing so.

III Feedforward Neural Network

III.1 Adaptive Features and Nonlinear Models

In the previous sense, we had: 
•
...
•


︸︷︷︸

x

g−1(w⊺x)−−−−−→ E[y | x].

which is really a shallow model, even if we had the polynomial basis, such as:
• · · · •
...

. . .
...

• · · · •


︸ ︷︷ ︸

x

g−1(w⊺x)−−−−−→ E[y | x].

However, with a neural network, we have some intermediate components:
•
...
•


︸︷︷︸

x

−→


•
...
•

 −→

•
...
•

 g−1(w⊺x)−−−−−→ E[y | x].

Here, we have:
E[y | x] = g−1(w⊺ψ(x; u)

)
,

where we have ψ(•; •) as new feature representations, and u is the parameters that allow us to learn new
representations.
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We need some nonlinear functions, otherwise, it degenerates into the previous model (Riesz Representation
Theorem), we want:

E[y | x] = g−1(w⊺φ(u⊺x)
)
6= g−1(φ(w⊺u⊺)x

)
.

We want adaptive, non-linear feature basis, so we construct:

︸︷︷︸
x

−→
◦
◦
◦︸︷︷︸
h

−→ o,

where we have h as a hidden layer composed of hidden units.

When we have h = φ(u⊺x), we have u as the weights, φ as an activation function and u⊺x is the pre-
activation vector.

They are also called artificial neural networks or multilayer perceptron.

III.2 Deep Neural Network

To have multiple hidden layers, we can have deep neural networks.

︸︷︷︸
x

−→

◦
◦
◦
◦

−→

◦
◦
◦
◦

−→

◦
◦
◦
◦

−→ E[y | x],

where we have the operation as:
hℓ = φ(w⊺

ℓ hℓ−1),

and the output of the L layers will be:

E[y | x] = g−1(w⊺
LhL).

If we were to expand, we have:

E[y | x] = g−1(w⊺
L φ(w⊺

L−1 φ(W⊺
L−2 φ(· · · )))).

Also, note that we have to incorporate the offset parameter:

hℓ =
[

φ(w⊺
ℓ−1hℓ−1) 1

]
.
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III.3 Activation Functions

• Logistic/Sigmoid Function:

φ(z) =
1

1 + e−z .

z

φ(z)

• Hyperbolic Tangent Function:

φ(z) = tanh(z) =
ez − e−z

ez + e−z .

z

φ(z)

• Rectified Linear Unit (or ReLU):
φ(z) = max(0, z).

z

φ(z)

• Leaky ReLU: Let ε ∈ (0, 0.1) be fixed

φ(z) = max(ε · z, z).

z

φ(z)

Sometimes, we need to train with depth rather than width for restricted flexibility and training time.
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III.4 Training a Neural Network

Now, we have the training as:

EP(x)KLD
[
P(y | x) || p

(
y, f (x, w0, · · · , wL)

)]
.

While assuming real-valued regression, we have:

≈ 1
N

N

∑
n=1

(
yn − f (xn, w0, · · · , wL)

)2.

Thus, the loss function is:

ℓ(w0, · · · , wL,D) = 1
N

N

∑
n=1

(yn − wL · hL)
2, (fcn.1)

whose partial derivative is:
dℓ

dwL
=

1
N

N

∑
n=1

2(yn − wLhL)(−hL).

Then, the next derivative is:

dℓ
dwL−1

=
1
N

2(yn − wLhL)(−wL)
dφ

d(wL−1hL−1)
· hL−1.

Of course, we may expand (fcn.1) into more layers, namely:

ℓ(w0, · · · , wℓ, · · · , wL,D) = 1
N

N

∑
n=1

(
w⊺

L φ(w⊺
L−1hL−1)− yn

)2.

To apply gradient descent, we use:

wt+1
ℓ = wt

ℓ − α∇wt
ℓ
ℓℓ(w0, · · · , wℓ, · · · , wL,D),

where wt
i is the all parameters in the neural network at iteration (time) t, and the step size α.

Here, we give an example of scalar neural network, say:

E[y | x] = w2 · h2,

h2 = logistic(w1 · h1),

h1 = logistic(w0 · x),

where we have w2, w1, w0, y1, x ∈ R.
The derivative w.r.t. w2 is:

d
dw2

ℓ(w2, w1, w0;D) = 1
N

N

∑
n=1

dℓn

dEn

dEn

dw2
=

1
N

N

∑
n=1

2
(
(w2 · hn,2)− yn

)
· hn,2.

The derivative w.r.t. w1 is:

d
dw1

ℓ(w2, w1, w0;D) = 1
N

N

∑
n=1

dℓn

dEn

dEn

dhn,2

dhn,2

d(w1 · h)
d(w1 · h)

dw1
=

1
N

N

∑
n=1

2
(
(w2 · hn,2)− yn

)
·w2 · hn,2(1− hn,2) · hn,1.
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The derivative w.r.t. w0 is then:

d
dw0

ℓ(w2, w1, w0;D) = 1
N

N

∑
n=1

dℓn

dEn

dEn

dhn,2

dhn,2

d(w1 · h)
d(w1 · h)

dhn,1

dhn,1

d(w0 · h)
d(w0 · h)

dw0

=
1
N

N

∑
n=1

2
(
(w2 · hn,2)− yn

)
· w2 · hn,2(1− hn,2) · w1hn,1(1− hn,1)x.

Diligent readers should already notice that the general structure of the derivatives are basically the same.

Here, we have forward propagation, as we forwardly spread the knowledge to the output.

III.5 Back Propagation

Consider the derivative as:

d
dwℓ

ℓ(w0, · · · , wL,D) = dℓ
dE

dE

dhL

dhL−1

dhL−2
· · · dgℓ+2

dhℓ+1

dhℓ+1
dwℓ

.

This represents the error signals go backwards through the network.

This is the issue with the ordering of the models, the forward computes from the right, and the backward
computes from the left.

Another issue is with exploding ot banishing gradients. With the long series of multiplication, product
from the chain rule leads to the total derivative going to ±∞ or 0, just from a few unstable terms.

• An example of vanishing could also due to the activation saturation, recall the logistic φ(z), we have:

φ′(z) = φ(z)
(
1− φ(z)

)
.

• Also, with ReLU, when initializing the weights, it should have been positive, or those units will be
evaluated to 0 and considered the dead units, pulling down the learning rate.

III.6 Vectorized Implementation of Deep Neural Network

Consider that:

X =


x⊺1
...

x⊺N

 and Y =


y⊺1
...

y⊺N

 ,

where X is the feature matrix of size N × Xc and Y is the label matrix of size N × K, we have:

Hℓ = φ(Hℓ−1Wℓ−1),

where Hℓ is of size N × Dℓ, Hℓ−1 has size N × Dℓ−1 and Wℓ−1 is Dℓ−1 × Dℓ.

Here, we consider the loss as:

ℓ(W0, · · · , WL, X, Y) = − 1
N ∑ Y� log softmax(HLWL),
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where the output is N × K and � denotes the element-wise product.

Here, the general form of the propagation is:

∇Wℓ
ℓ(W0, · · · , WL, X, Y) =

1
N
(E[Y | X]−Y)W⊺

L � φ′(AL)W
⊺
L−1 � φ′(AL−1) · · · ,

so we can think about it as:

∇Wℓ
ℓ(W0, · · · , WL, X, Y) =

1
N

[
(E[Y | X]−Y)

ℓ+1

∏
j=L

W⊺
j � φ′(Aj)

]⊺
Hℓ.

We might need to transpose again to reach to the same dimensions with the matrix.

III.7 Skip Connections

We consider the hidden units as:
hℓ = φ(W⊺

ℓ−1hℓ−1) + hℓ−1,

and the residual connection is:
hℓ − hℓ−1 = φ(W⊺

ℓ−1hℓ−1).

Consider the version with dimension change, we have:

hℓ = φ(W⊺
ℓ−1hℓ−1) + U⊺hℓ−1,

where we have U⊺ of Dℓ × Dℓ−1 as the parameter matrix to train.

Now, we consider the example of scalar neural network with skip connection as:

E[y | x] = w2h2, h2 = φ(w1h1) + h1, and h1 = φ(w0x),

for x, y ∈ R, and we consider the derivatives again:

dℓ
dw2

=
1
N

N

∑
n=1

2(E[yn | xn]− yn)hn,2,

dℓ
dw1

=
1
N

N

∑
n=1

2(E[yn | xn]− yn)w2·

However, this changes for w0 case:

dℓ
dw0

=
1
N

N

∑
n=1

2(E[yn | xn]− yn)w2 (hn,2(1− hn,2)w1 + 1) hn,1(1− hn,1)x.

Note that the additional 1 prevents the gradient to be zero even it was very small, so it makes drastic
changes.
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III.8 Weight Initialization

Recall the logistic and ReLU function, we want to have the initial weights to be at a nice region of input,
otherwise it could screw up.

We can consider the Xavier initialization function, consider for logistic and tanh activation:

Wl ∼ Uniform

(
−
√

6√
Dl + Dl+1

,

√
6√

Dl + Dl+1

)

This is symmetric about zero and the as the dimension of the layers increases, it is more focused onto zero.

In terms of the ReLU, he uses:

Wl ∼ N
(

0,
2

Dl

)
.

III.9 Batch and Layer Normalization

We want to stay in a good region during the training. We consider the Batch layer to “normalize” a region
correspondingly:

âd =
ad − µ̂d√

σ̂d
2 + ϵ

, where HlWl = Al+1,

where we may grab a column from the hidden layer.

Then consider:
Hℓ+1 = φ(Âl+1 � γ + β),

which is with the batchnorm parameters to be trained on.

This prevents the runaway gradients, to make sure the goodness of the initializations were kept.

Consider the normalization transformation, so we have:

ãn,d = βα + γα
an,d −E[a·,d]√

Var(a·,d) + ϵ
,

where βd ∈ R and γd ∈ R, with d ∈ [1, D] and ϵ > 0 is a small positive constant for numerical stability.

LayerNorm is with respect the layers:

an,d = βα + γα
an,d −E[an,·]√

Var(an,·) + ϵ
.

The selection of Batch Norm and Layer Norm may be dependent on the dimension of the equation.

• BN is with fixed β and γ, and use train-time statistics, and

• LN is with fixed β and γ, and use to compute E[a] and Var[a] for the test points.
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III.10 Capacity Control for Deep Neural Network

Similar to regularization, we have weight decay, namely:

ℓ̃(w0, · · · , wL;D, λ) = ℓ(w0, · · · , wL;D) + λ
L

∑
ℓ=0
‖Wℓ‖2

2.

Similar to the ensemble method, we train multiple models and combine them via average/voting.
It is noted that such training is expensive, to train 3 models, right? So we want cheap ensembles via
dropout.

Here, we ignore some neurons (hidden units) as zeros by random.

︸︷︷︸
x

−→

◦
6 ◦
◦
◦

−→

◦
◦
6 ◦
◦

−→

◦
◦
◦
◦

−→ E[y | x],

There were element-wise multiplication with binary vectors:

h1 � b,

which is like to randomly hide certain units.
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IV Stochastic, Adaptive Optimizers

IV.1 Stochastic Gradient Descent

The main idea is:

∇Wt
l
ℓ(Wt

0, · · · , Wt
l , · · · , wt

L;D) ≈ ∇Wt
l
ℓ(Wt

0, · · · , Wt
l , · · · , wt

L;B)

=
1
B

B

∑
b=1
∇Wt

l
ℓ(Wt

0, · · · , Wt
l , · · · , wt

L; (xb, yb)).

For example, we could have a lot of data, but a small proportion of it will give me a good idea on what
us a smaller subset. There are also randomness in these sets.

The update is:
wt+1 = wt − α · ∇wtℓ(wt;B).

Might need to handle between large and small sizes.

Now, we can use SGD with momentums, consider:

Vt
l = β ·Vt+1

l = Vt−1
l−1 +∇Wl ℓ(W

t
l ·W

t
L,B),

and the update is:
wt+1

l = wt
l − α ·Vt

l , vt=0 = 0,

and α.

IV.2 Adaptive Moment Estimation (ADAM)

We let:

vt
l = β1vt−1

l + (1− β1)∇Wt
l
ℓ

st
l = β2st−1

l + (1− β2)(∇Wt
l
ℓ)2.

Then, the final update is:

v̂t
l =

vt
l

1− βt
1

, Ŝl
t
=

St
l

1− βt
2

so:
wt+1

l = wt
l −

α√
ŝt

l + ϵ
� v̂t

l .

For instance, give some optimization surface and trajectory, the batch one for SVG will be jumping around.
Likewise, for ADAM, the β close to 0 will be jumping around and β close to 1 will be more stable.

IV.3 Convolutional Neural Network

A basic example is the image classification problem:
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• With an input image, we want to collapse it as a vector, called vectorize.

• The MNIST image is the visualization of the handwritten monocolors of 0 to 9.

Note that when we vectorize the image, the issue is that the identification could not necessarily be in the
middle.
The example is with identifying if there is a deer in the image, it might not uniformly be on the center.
We ant:

• Shift invariance or transitional invariance.

We want to break this constraints.

• A solution could be to have multiple neural networks with proportions of the neural network.

• Then, we have the feed forward layer that could filter our some information.

• There could be some particular weight matrix to convolute about the image matrix.

Then, we consider the output layer as the last layer of the last hidden layer. Is there such object in the
image?
We then can flatten the output since it contains the information of the spacial information.
Consider a 32× 32× 3 image, the filter can be 5× 5× 3, where the depth has to be the same, and we can
convolve (slide) over all spatial location.

The stride effect is that:
N − F
stride

+ 1.

We many change the stride or manually changing the border by adding zeros.

For example, with 32× 32× 3 and 10 5× 5 filters with stride 1 and pad 2, the output volume size is:

32 + 2× 2− 5
1

+ 1 = 32,

so the result is 32× 32× 10.
The total number of parameters for each filter is 5× 5× 3+ 1 = 76 parameters, so in total 760 parameters.

The convolution network preserves spacial locality, and have coordinate invariant. The process is to have
a weight matrix and scan over the original matrix.

Implementation-wise, the matrices are typically square.

There were pooling strategies to get some representative data.
For a max pooling, it is pulling out the maximum in the filters and the strides, and it gives some activation
information.

The application of CNN beyond images is with 1-D convolutions good for sentence streams of data.

• Such as input wave front for sound recognition.
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• Graphs of molecules, such as a ways of writing methanol (C2H5OH).

• Can be generalized to other transformations beyond translations, such as astronomical objects.

V Recurrent Neural Network (RNN)

V.1 Time Series Data

Time series data is dependent on time, where we have:

xn =
(

xn,1 · · · xn,T

)
and yn =

(
yn,1 · · · yn,J

)
.

For example, we have sentiment analysis, say:

xn = [“This”, “jacket”, “is”, · · ·] and yn ∈ {0, 1}.

It can also be used in forecasting, such as considering:

xn = observable conditions and tn,t = $ at time t.

Also with translation, we consider:

xn = [”I”, ”have”, ”3”, ”dogs”] and yn = [”Ik”, ”heb”, ”drie”, ”honden”] or ỹn = [”Tengo”, ”tres”, ”perros”]

Note that the number of words does not necessarily corresponds.
For instance, the one-hot-encoding corresponds to the word.

Here are two important features of time series data:

• Information is encoded by time.

• Dynamic in size/length.

V.2 Recurrent Neural Network

Consider a feed-forward, we have:

[xt] [ht] E[y | x]
w0

w1

The output is:
E[yn | xn] = g−1(W⊺

2 hT).

Instead, we want to have:
ht = ϕ(w⊺

0 xn,t + w⊺
1 ht−1),

with ht as the time index, ϕ as the activation function, and ht−1 is the previous hidden state.
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All the layers share the same parameters w1 and w0.

[h0] [h1] [h2] · · · [hT ] E[y | x]

0 x1 x2 xT

w1.(−) w1.(−) w1.(−) w1.(−) w1.(−)

w0.(−) w0.(−) w0.(−) w0.(−)

This seems nice, but it is hard to backpropogate through time.

Here, we consider the loss function as:

ℓ(w0, w1, w2; x1, · · · , xT , y) =
(
E[y | x1:t]− y

)2.

The derivative with respect to w2 is:

d
dw2

(
E[y | x1:t]− y

)2
= 2(w2 · hT − y) · ht.

When we think about the derivative with respect to w0, we have:

dℓ
dw0

=
dℓ

dhT

dhT
daT

(
daT
dw0

+
daT

dhT−1

dhT−1

daT−1

(
daT−1

dw0
+

daT−1

dhT−2

dhT−2

daT−2

(
· · ·
)))

Hence, for the derivative w.r.t. w1, we have:

dℓ
dw1

=
dℓ

dhT

dhT
daT

(
daT
dw1

+
daT

dhT−1

dhT−1

daT−1

(
daT−1

dw1
+

daT−1

dhT−2

dhT−2

daT−2

(
· · ·
)))

Note that for w.r.t. w1, we have:
dat

dw1
= ht−1 and

dat

dht−1
= w1,

whereas for w.r.t. w0, we have:
dat

dw1
= xt and

dat

dht−1
= w1,

Note that the xt is fixed for w0, but it will be more computationally challenged for w1, as ht−1 requires
more computation.

• This is too nasty, so people might have clipping to end at some amount of time, or using random
time-steps to compute.

For a simple RNN, we have:

E[y0 | xn,1:T ] = g−1(w⊺
2 hT),

ht = ϕ(W⊺
1 ht−1 + W⊺

0 xn,t), h0 = 0.

There is an extra 1 to make the bias implicitly. Consider training RNN with squared loss for T = 4:

dℓ
dw1

=
1
N

N

∑
n=1

2(E[yn | xn,1:4]− yn)︸ ︷︷ ︸
dℓn
dE

· w2︸︷︷︸
dE

dhT

· ϕ′(a4)︸ ︷︷ ︸
dhT
daT

(
h3 + ϕ(a3)

(
h2 + ϕ′(a2)(h1 + ϕ′(a1) · h0)

))

=
1
N

N

∑
n=1

dℓn

dEn
w2 ·

(
ϕ′(a4)h3 + ϕ′(a4)ϕ

′(a3)h2 + ϕ′(a4)ϕ
′(a3)ϕ

′(a2)h1 + ϕ′(a4)ϕ
′(a3)ϕ

′(a2)ϕ
′(a1)h0

)
.
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Eventually we have:

dℓ
dw1

=
1
N

N

∑
n=1

dℓn

dEn
· w2 ·

1

∑
j=T

(
j

∏
i=T

ϕ′(ai)

)
hj−1.

Note that for the logistic activation function, this will become smaller and smaller as it is the product of
elements in [0, 1].
For the ReLU, if it is in the far right, it might explode and might just be the sum of the hidden states.
There are two common coping mechanisms:

• Back propagate through time (BPTT) Truncation: stop the problem up to some time, so assuming
less times were observed.

• Randomized Truncations: there will be two types of truncations:

– hard truncation: pick a value of T randomly.

– soft truncation: introduce a random variable X ⊂ {0, 1} multiplied in the sum so that T is more
likely to be 0 when in the deeper (earlier) layers.

One problem is that it has too much “equality” among all time steps. Consider the dog (“el perro”), but
the “the” does not matter as much as “dog” in English.

V.3 Long Short-Term Memory (LSTM) Architecture

The idea is to have hidden states replaced by memory cells.

Here, memory cell has an “internal state” that is protected from gradient explosion or vanishing.

Memory cell has dedicated “gates” for:

• input gate: how much xt should influence internal state?

ιt = ϑ(Wi
0
⊺
xt + Wi

1
⊺

ht−1),

where ϑ is the logistic function.

• forget gate: should internal state be flushed?

ft = ϑ(W f
0
⊺
xt + W f

1
⊺

ht−1).

• output gate: how much should internal state affect the current output?

Ot = ϑ(Wo
0
⊺xt + Wo

1
⊺ht−1).

Also, we define the input node as:

c̃t = tanh(Wc
0
⊺xt + wc

1
⊺ht−1),

and the internal state as:
ct = ft � ct−1 + ιt � c̃t.



Machine Learning: Deep Learning Notebook 23

Also, the hidden state:
ht = Ot � tanh(ct).

internal state ct−1 � ⊕ ct

� tanh

ft ιt c̃t Ot �

hidden state ht−1 q ht

input xt

Figure V.1. LSTM Memory Cell.

V.4 Gated Recurrent Units (GRUs)

There will just be two gates:

• Reset gates:
rt = ϑ(Wr

0
⊺xt + Wr

1
⊺ht−1),

• Update gates:
ut = ϑ(Wu

0
⊺xt + Wu

1
⊺ht−1),

Here, GRU also computes a candidate hidden state:

h̃t = tanh(Wh
0
⊺

xt + Wh
1
⊺
(rt � ht−1)),

it then computes the final hidden state:

ht = ut � ht−1 + (1− ut)� h̃t.

hidden state ht−1 � ⊕ ht

� rt ut �

q tanh h̃t

q

input xt

Figure V.2. GRU Memeory Cell.

Now, we have the three basic architectures:
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• Simple RNN having ht = ϕ(W⊺
0 xt + W⊺

1 ht−1).

• LSTM and GRM, which had gates to have different weights given to the structures.

There are four patterns for employing RNNs:

• Many-to-one Setting, where we have:

y

□ □ □ · · · □

x1 x2 x3 xT

This is major used for the classification (categorizing the documents/events) and or positive/nega-
tive point of view.
For image generation, the GenAI gets a series of text input (e.g. a frog fighting a duck) and give a
image output.
The ultimate goal is to approximate p(y | x1, · · · , xT), where we have:

E[y | x1, · · · , xT] = g−1(W⊺
outhT),

and the recurrence relationship as:
ht = f (ht−1, xt).

• One-to-many Setting, where we have:

y1 y2 y3 yT

□ □ □ · · · □

x

Here, we think about the conditional text generation, such as having a trained model, and have an
input of topic to generate a paragraph.
Here, we want to consider that:

p(y1, · · · , yT | x)

:=
T

∏
t=1

p(yt | x) option #1,

:=
T

∏
t=1

p(yt | yt−1, · · · , y1, x) option #2.

The second was the auto-regression model, where we utilize the regressions from the previous
models. In particular, the chain rule:

p(A, B, C) = p(C)p(C | B)p(A | B, C).
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Note that this depend on if the model depends on Markov property, of if the current steps were
impacted on the previous steps. For the stock market example, if the fluctuation is random, use the first
model. For the language generation or other related states, then we shall use the second model.

– LLMs like ChatGPT is using the second model for the generation, as the texts has inter-word
interactions.

In particular, for the second model, we have:

p(y1, · · · , yT | x) =
T

∏
t=1

p(yt | yt−1, · · · , y1, x),

and so the expectation value is:

E[yt | yt−1, · · · , y1, x] = g−1(W⊺
outht), and

ht = f (ht−1, yt−1, x).

Alternatively, x could just define h0.

• Many-to-many, Aligned Setting, which is represented as:

y1 y2 y3 yT

□ □ □ · · · □

x1 x2 x3 xT

This could be applied to speech tagging, and it is more restricted when there is a one-to-one corre-
spondence between the speeches.
Here, the representing equation is:

p(y1, · · · , yT | x1, · · · , xT) =
T

∏
t=1

p(yt | y[t− 1], · · · , y1, xt, · · · , xt).

In particular, the expectation is:

E[yt | yt−1, · · · , y1, xt, x1] = g−1(W⊺
outht).

The recurrence relationship becomes:

ht = f (ht−1, yt−1, xt).

• Many-to-many, not Aligned Setting, which is represented as:

y1 y2 yT′

□ □ · · · □ □ · · · □

x1 x2 xT
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This can be the pattern for translation. The model would be:

p(y1, · · · , yT′ | x1, · · · , xT) =
T′

∏
t′=1

p(yt′ | y1, · · · , yt′−1, x1, · · · , xT).

There will be a encoder-decoder architecture, with the example as follows from English to French.

Ils regardent · · · 〈ens〉

□ □ □ □ □ hT □ □ □ □

〈bos〉 They are watching · · · 〈ens〉 (Ils) (regardent) (· · · )

Here, the encoder parameter is:
ht = f (ht−1, xt),

which f could be any of the three architectures. For the decoder parameter, we have:

st′ = ψ(st′−1, yt−1, hT),

and the ψ could be any of the three architectures.
So, the expectation of the random variable is:

E[yt′ | yt′−1, · · · , y1, x1, · · · , xT ] = g−1(W⊺
outst).

At the same time, this could be applied as to chat-bots in terms of applications.

Then, we think about decoding/sampling sequences at test-time.

• Greedy search:

ŷt′ = arg max
yt′

Categorical
(
yt′ , softmax(W⊺

outst′)
)

= arg max
k∈[1,M]

softmax(W⊺
outst′).

Note that the Categorical is the discrete distance over French words. Note that this is okay, but not
optimal.

• Exhaustive search:

(ŷ1, · · · , ŷT′) = arg max
ŷ1,··· ,ŷT′

p(y1, · · · , yn | x1, · · · , xT),

and note that this will have the computational cost as |V|T′ .

• Beam Search:

– Step 1, we greedily select the top M words, where M is the beam size.

– Step 2, we perform greedy selection, thereafter for M independent sequences.

– Step 3, we pick sequence with the highest probability.
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y1

...

y3 {〈bos〉, y3} y84 {〈bos〉, y3, y84}

〈bos〉
...

y100 {〈bos〉, y100} y34 {〈bos〉, y100, y34}

...

yM

highest probability

highest probability

V.5 Attention Models

An issue with the encoder/decoder model is that is has some information bottleneck when transformed
between the encoder and decoder step. Here are some solutions:

• The Attention Mechanism, which allows the decoder to “attend” to different parts of the input
sequence x1, · · · , xT .
We let D = {(K1, V1), · · · , (Km, Vm)} ⊂ RDk ×RDv be a “database” of m key-value pairs.
Here, we de note a query as q ∈ Rrk, and the attention over D is defined as:

Attention(q,D) :=
M

∑
m=1

α(q, Km) ·Vm,

where ∑m α(q, Km) = 1, and 0 ≤ α(q, Km) ≤ 1.
To compute the weights α, we use the softmax function to parameterized, as:

α(q, Km) = softmax(q; K⊺q) =
exp

{
K⊺

mq/
√

Dk
}

∑M
j=1 exp

{
K⊺

j q/
√

Dk

} .

The lookup process is by the inner produce step, but we have the
√

Dk to normalize the result.

– The question comes, why would the inner product account for the difference?
We note that:

(k− q)2 = k2 − 2kq + q2,

which would account for the difference.

• Batched Computation, in this model, we consider the attention as:

Attention(Q;D) = softmax
(

QK⊺
√

D

)
V,



Machine Learning: Deep Learning Notebook 28

where Q ∈ RN×Dk , so we have the first inner product as N ×M dimensions, V ∈ RM×Dv , and the
softmax function is implemented row-wise.
The output would be N × Dv dimension.

Consider the sequence with attention:

• Let c be the context variable produced by the encoder.

• In the original formulation (∼2014), we have:

c := hT .

The problem is that hT is to static, and does not allow dynamic context for c.

To do so, we consider the decoder with attention. Consider:

ct′ =
T

∑
t=1

α(q = St′−1, Kt = ht)ht,

with:
St′ := g(yt′−1, ct′ , St′−1),

where g is the function that could be LSTM, GRU, or etc.

attention y1 y2 y3

h1 h2 h3 S1 S2 S3

x1 x2 x3 c0 c1 c2

Then, we consider the multi-head attention. Here, we want to define multiple attention mechanisms, just
like ensemble method.

• For example, when reading an article, we might need attention of different perspective (such as
theme, style, and rhetorics).

The problem is that we do not want to define I-independent attentions models, but rather define I headers,
h1, · · · , hi, · · · , hI , where:

hi = Attention(Wa
1, Wk

i K, Wv
1v),

where Wi’s are matrices of trainable parameters.
Given the computations of each hi’s, we will result in:

Multi-Head Attention(h1, · · · , hI) = WO ·


h1,
...

hI

 ,

in which W0 ∈ RO×(I×Dv), and the matrix is concatenation of the I headers.
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The other is self attention. Given a sequence (x1, · · · , xT), the self attention model is:

Self-Attention(q = xt,D = {(xt, xt)}T
t=1).

This works like the clustering of the data, as it is looking for similarity of the data.

Here, the main point is to compute the parallel:

□ □ · · · □ · · · □

x1 x2 xt xT

V.6 Transformer Architecture

This is in correspondence to the issue with the RNN that the computation cannot be done in parallel.

• We have unaligned, sequence-to-sequence data, and we want to create the result.

• The data are τx = {τx,1, · · · , τx,t}, for example, an English sentence of length T, and τy = {τy,1, · · · , τv,T′},
for example, a French sentence length T′, in which τx,t, τy,t′ ∈ N≥0.

Again, we want to have the loss function:

KLD
[
p∗(τy,1, · · · , τv,T′ | τx,1, · · · , τx,t) || p(τy,1, · · · , τv,T′ | τx,1, · · · , τx,t)

]
≈ 1

N

N

∑
n=1
− log p(τy,n,1, · · · , τy,n,T′ | τx,n,1, · · · , τx,n,t)

=
1
N

N

∑
n=1
− log

(
T′

∏
t′=1

p(τy,n,t′ | τx,n,1, · · · , τx,n,t, τy,n,1, · · · , τy,n,t′−1)

)

=
1
N

N

∑
n=1

T′

∑
t′=1
− log Categorical(τy,n,t′ | τx,n,1, · · · , τx,n,t, τy,n,1, · · · , τy,n,t′−1)

=
1
N

N

∑
n=1

T′

∑
t′=1
− log softmaxτy,n,t′

(
f (τy,n,t′ | τx,n,1, · · · , τx,n,t, τy,n,1, · · · , τy,n,t′−1)

)

Consider the embedding that:
Ex ∈ RV×Dx ,

with each row corresponding to a vector representation of each word, that:

one-hot(τx,t)
⊺Ex = Ex[τx,t :]

• The first step is the input encoding that is having x ∈ RT×Dx ,

• Then, for the positional encoding, we have:

x̃ = x + P, where P ∈ [− 1, 1]T×Dx that is positional encoding,
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and the odd and even cases are:

Pt,2d = sin
(

t
100002d/Dx

)
Pt,2d+1 = cos

(
t

100002d/Dx

)
.

• For the multihead self-attention model, we have:

Ae = softmax

(
(x̃Wq,s)(x̃Wq,s)⊺√

De,k

)
(x̃Ww,e).

• Then, we have a skip connection and layer norm for the add & norm:

LayerNorm(x̃ + MHSA(x̃)) =: x̃1.

• We continue with positionwise feed-forward NN:

PWFF(x̃1) =


ReLU( ˜x1,1, W1)W2

...
ReLU( ˜x1,T , W1)W2

 ∈ RT×Dx .

• Eventually, we have another add & norm layer, that is:

LayerNorm(x̃ + PWFF(x̃1)) =: x̃2.

Note that the encoder repeat the steps from MHSA till the last add & norm for all L layers.

The thing is that you can change dimensions for the MHSA and PWFF parameters, but the dimension of the
input/output must be the same due to the skip-connection layers.

For the encoder, we have:
x̃Lenc,z = Encoder(τx,n,1, τx,n,2, · · · , τx,n,T),

where Lenc is the number of layers and z is the index of sub-layer.

For the decoder, we have:
Decoder(x̃Lenc,z, τx,n,1, τx,n,2, · · · , τx,n,T).

Here, we can consider the masking as to hide from the decoder all target elements at the current time step
t′ and beyond.

τy = {τy,1, · · · , τy,t′−1︸ ︷︷ ︸
revealed

, τy,t′ , · · · , τy,T︸ ︷︷ ︸
hidden

}.

Consider the matrix:
Ỹt′−1 = Yt′−1 + Py,

where all the rows below t′ − 1 are encoded with non-information token <PAD>. This is the step called
masked multi-head attention.
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Then, the most step is the Encoder-decoder attention, where we have:

Ae = softmax

(
(Ỹt′ ,1Wq,e)(X̃Lenc,2We,v)⊺√

De,k

)
(X̃Lenc,2We,v).

Again, we have the skip connection and the layer norm as:

Ỹt′ ,2 = LayerNorm
(
Ỹt′ ,1 + MHA(Q = Ỹt′ , K = X̃Lenc,2, V = X̃Lenc,2)

)
.

Still, we have the positionwise feedforward, we have:

Ỹt′ ,3 = LayerNorm
(
Ỹt′ ,2 + PWFF(Ỹt′ ,2)

)
.

Then, we can think of the model training loss of the unaligned sequence-to-sequence loss as:

ℓ(θ; {τx,n, τy,n}N
n=1) =

1
N

N

∑
n=1

T

∑
t′=1
− log softmaxτy,n,t′

(
Transformer(τy,n,t′−1, · · · , τy,n,T)

)
.

VI Unsupervised Learning and Deep Generative Model

VI.1 Unsupervised Learning with Neural Networks

Generally, we consider the D = {(xn, yn)}N
n=1 to learn the xn 7→ yn as supervised learning.

For unsupervised learning, we consider {xn}N
n=1, and we want to learn xn 7→ zn, which is a hidden struc-

ture or latent variable.

An example could be the clustering problem, we consider having data {xn} and trying to cluster them
into pieces zi’s.

First, we need some unsupervised loss function:

ℓ(θ;D = {xn}N
n=1 =

1
N

N

∑
n=1

ℓ(xn),

and with autoencoding, we have:

1
N

N

∑
n=1

ℓ(xn, g(hn)) =
1
N

N

∑
n=1

(xn − x̂n)
2.

We consider the transformation:
x̂n

hn

xn

g

f

Here, we want to f as the encoder and g as the decoder.
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Note that we want:
dim(hn) < dim(xn).

When f and g are invertible, then we basically have a PCA (Principle component analysis).

• The Autoencoders is the NNs trained to predict their own input. The purpose is to find a new
compressed feature space:

[x] [h1] · · · [hL] E[x | x]

Note that there will be some information bottleneck in the h· levels to constraint information flow to
the output.

Here, we have:
E[x | x] = g−1(W⊺

LhL),

which is the same as the traditional hidden layer. For x ∈ R, we have:

− log p(x) = − logN (x, µ = W⊺
LhL, σ2

0 Id).

For x ∈ [0, 1]p, we have:

− log p(x) = − log
D

∏
d=1

Bernoulli(xd, logistic(W⊺
L,dhL)).

Then, we have the KLD as:

KLD [P(x) || p(x)] ≈ 1
N

N

∑
n=1
− log p(xn) =

1
N

N

∑
n=1
− log

[
D

∏
d=1

Bernoulli(xd, logistic(W⊺
L,dhL))

]
.

As a historical note, AEs were predominantly used to build deep NNs by first doing supervised learning.

Then, there are also variational autoencoders, which we have:

[x] [z] E[x | z]

The goal is to build a generative model of the data distribution P(x), where we have:

z ∼ p(z) and x ∼ p(x | z).

To train a VAE, we do:

KLD [P(x) || p(x)] ≈ 1
N

N

∑
n=1
− log p(xn)

= − 1
N

N

∑
n=1
− log

[∫
zn

p(xn | zn)p(zn)dz
]

=
1
N

N

∑
n=1
− log

[∫
zn

q(zn; ψ(xn))

q(zn; ψ(xn))
· p(xn | zn)p(zn)dzn

]

≤ 1
N

N

∑
n=1

∫
zn

q(zn; ψ(xn)) [− log p(xn | zn)− log p(zn) + log q(zn; ψn)]
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=
1
N

N

∑
n=1

Eq(zn) [− log p(xn | zn)] + Eq(zn) [log q(zn; ψ(xn))− log p(zn)]

=
1
N

N

∑
n=1

Eq(zn)[− log p(xn | zn)] + KLD [q(zn; ψ(xn)) || p(zn)]

=
1
N

N

∑
n=1

(
1
S

S

∑
s=1
− log p(xn | ẑn,s)

)
+ KLD [q(zn; ψ(xn)) || p(zn)].

Hence, we have the structure as:

[xn] • q(zn | xn) ẑn,s • E[x | z]

Encoder Decoder

The goal is to have sample ẑ ∼ N (µ, σ2), and for the implementation in local-scale form:

E ∼ N (0, 1), ẑ = µ + σ · E , ẑ ∼ N (µ, σ2).

Here, we have the ẑ = µ + σ � ε:

µ

[xn] enc [ẑ] dec E[x | z]

σ

E ∼ N (0, 1)

In general, we can use the reparametrization trick that:

ℓ =
1
N

N

∑
n=1

(
1
S

S

∑
s=1
− log p(xn | ẑn = r

(
ψ(xn); ε̂n,s

))
+ KLD [q(zn; ψ(xn)) || p(zn)].

After training, the sample need data via:

ẑ ∼ p(ẑ) x̂ ∼ p(x, ẑ).

VI.2 Deep Generative Model

Models based on NNs that can generate data via a probabilistic formalism, and VAEs are just one example.
There are other models:

• Generative Adversarial Network (GAN)

• Normalizing Flows

• Diffusion Models.
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In these models, there will be “noise” and there are neural-net transformation.

A deep VAE would have multiple stochastic latent variables z1, · · · , zL, where we draw samples of x via
zL ∼ p(zL), zL−1 ∼ p(zL−1 | zL). In general, we have:

zl ∼ p(zl | zl−1) and x ∼ p(x | z1).

VI.3 Diffusion Model

In a graph, the model is:

µL µL−1

[x] zL zL−1 · · · z1 E[x | z1, · · · , zL]

σL σL−1

Here, we consider the de-noising of diffusion models, we have:

• Motivation to single stoch layer VAE are hard, and not powerful enough, and multi stoch layers are
hard to train.

• The core idea is to use Neural networks only for the decoder patron, use diffusion processes as
encoder.

Consider an input image X0, we want to have noise XT ∼ N (0, Id).

• The distribution would just be:

X0 X1 X2 · · · XT ∼ N (0, Id)

q(X1 | X0) q(X2 | X1)

Here, let X0 ∈ R be the data and T be the maximum number of time steps. The model is:

p(X0) =
∫

X1,··· ,XT

p(X0, X1, · · · , XT)dX1 · · ·XT .

Here, they all have the same dimensionally xt ∈ RD1×D2 , and Xi’s are the latent variables akin to z in a
VAE.

Hence, for the forward process, we have:

q(X1, · · · , XT) =
T

∏
t=1

q(Xt | Xt−1),

and we have the distribution as:

q(Xt | Xt−1) = N (Xt; µ =
√

1− βtXt, Σt = Bt Id).
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Hence, we have {β1, · · · , βT} ∈ (0, 1)T is the variance schedule that determines how quickly we fo from
data to noise.

Ho et al. set β1 = 10−4, βT = 0.02, and the rests are set with linear interpolation.

Due to the diffusion sets being normal distributions, we can directly compute q(Xt | X0) for arbitrary t:

q(Xt | X0) = N (µt =
√

ᾱtX0, Σt − (1− ᾱt) Id), where ᾱt =
t

∏
t′=1

(1− βt′).

Then, we consider the reverse process from the noise to data. We need to learn a “de-noiser” that inverts
the diffusion process:

pθ(Xt−1 | Xt) := N
(
Xt−1, µθ(Xt, t), Σt(Xt, t)

)
.

In general, these can be neural nets that take in Xt and t and produce µt, Σt.

To train the denoiser, we have:

KLD [P(X0) || p0(X0)] ≈
1
N

N

∑
n=1
− log pθ(Xn)

=
1
N

N

∑
n=1
− log

∫
X1,··· ,XT

pθ(X0, · · · , XT)dX

=
1
N

N

∑
n=1
− log

∫
X1,··· ,XT

pθ(Xt)
T

∏
t=1

pθ(Xt−1 | Xt)dX

=
1
N

N

∑
n=1
− log

∫
X1,··· ,XT

q(X1, · · · , XT | X0)

q(X1, · · · , XT | X0)
pθ(Xt)

T

∏
t=1

pθ(Xt−1 | Xt)dX

≤ 1
N

N

∑
n=1

Eq(X1,·,XT)

[
− log

pθ(Xt)∏T
t=1 pθ(Xt−1 | Xt)

∏T
t=1 q(X1, · · · , XT | X0)

]

= Eq(X1,·,XT |X0)

[
− log p(XT)−

T

∑
t=1

log
pθ(Xt=1 | Xt)

q(Xt | Xt−1)

]
.
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