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1 Measure Theory

1.1 Preliminaries

Lemma. Partition of Rectangles.
If a rectangle I is the union of finitely many non-overlapping rectangles, i.e., I = t∞

k=1 Ik, then v(I) =

∑N
k=1 v(Ik).

Lemma. Overlapping Cubes of Rectangles.
If rectangles I1, I2, · · · , IN satisfy I ⊂ ⋃N

j=1 Ik, then v(I) ≤ ∑N
k=1 v(Ik).

Thm. Partition of Open set in R.
Every open set G ⊂ R can be written as a countable union of disjoint open intervals.

Thm. Partition of Open set in Rn.
Every open set G ⊂ Rn can be written as a countable union of non-overlapping (closed) cubes.
Rmk. Dyadic decomposition of Rn is composed of the cubes has vertex points at 1

2k Z with length 1
2k+1 .

Prop. Cantor set.
The cantor set C has the following properties:

• C 6= ∅;

• C has an empty interior, contains no interval, and is totally disconnected;

• C has no isolated points, and all its points are limit points of itself, i.e., C is perfect;

• C is compact;

• m∗(C) = 0 (as the union of intervals has length converging to 0).

1.2 Outer Measure

Defn. Outer measure.
Let E ⊂ Rn, we define the outer/exterior measure of E as:

m∗(E) := inf
∞

∑
j=1

v(Qj),

where the infimum is taken over all countable covering og E by (closed) cubes, i.e., E ⊂ ⋃∞
j=1 Qj.

Prop. Properties of Outer measure.
The outer measure of sets follows the below properties:

(i) Closer Approximation: For every ε > 0, there exists a covering E ⊂ ⋂∞
j=1 Qj with:

∞

∑
i=1

m∗(Qj) ≤ m∗(E) + ε;

(ii) Monotonicity: If E ⊂ F, then m∗(E) ≤ m∗F;
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(iii) Countable Sub-additivity: If E =
⋃∞

j=1 Ej, then m∗(E) ≤ ∑∞
j=1 m∗(Ej);

Rmk. If m∗(F) = 0 and E ⊂ F, m∗(E) = 0. If m∗(Ek) = 0 for all k, then m∗(
⋃∞

k=1 Ek) = 0.

(iv) Approximation by Open Sets: Let E ⊂ Rn, for all ε > 0, there exists open set G such that E ⊂ G and
m∗(G) < m∗(E) + ε.

(v) Sum of Separated Sets: If d(E1, E2) = inf{|x − y| : x ∈ E1, y ∈ E2} > 0, then m∗(E1 ∪ E2) =

m∗(E1) + m∗(E2).
Rmk. This is not true if we only assume E1 ∩ E2 = ∅, contradicted by the Banach-Tarski paradox.

(vi) Countable Sum of Almost Disjoints: If a set E is the countable union of almost disjoint cubes, i.e.,
E ⊂ t∞

k=1Qk, then m∗(E) = ∑∞
k=1 v(Qj).

1.3 Measurable sets and Lebesgue measure

Defn. Lebesgue measurable set.
A set E ⊂ Rn is said to be Lebesgue measurable if for all ε > 0, there exists open set G such that G ⊂ E
and m∗(G \ E) < ε.
If E is measurable, we define its Lebesgue measure to be m(E) = m∗(E).
Rmk. Countable Sub-additivity ensures that there exists a open set G such that G ⊃ E and m∗(G) <

m∗(E) + ε. Then, by Sum of Separated Sets, G = E t (G \ E), then m∗(G) ≤ m∗(E) + m∗(G \ E). If
m∗(E) < ∞, m∗(G)−m∗(R) ≤ m∗(G \ E).

Prop. Propositions on Measurable Sets.
The following propositions hold for measurable sets:

(i) Every open set is measurable.
Rmk. Every rectangle is measurable.

(ii) Every set with zero outer measure is measurable, which is defined as a null set.

(iii) A countably union of measurable sets is also measurable.

(iv) Every closed set is measurable.
Rmk. We first prove that compact sets are measurable and any close sets can be written as a countable
union of compact sets, say F =

⋃∞
k=1(F ∩ Bk) where Bk denotes the closed ball of radius k.

Lemma. If F is closed, K is compact, and F, K are disjoint, then d(F, k) > 0.
Lemma. If {Ik}N

k=1 is a finite collection of non-overlapping rectangles, then m
(⋃N

k=1 Ik

)
= ∑k=1.

(v) The complement of any measurable set is measurable.
Rmk. Let E be measurable set, there exists H as a countable union of closed sets such that Ec = H.

(vi) A countable intersection of measurable sets is measurable.
Cor. If E1 and E2 are measurable, E1 \ E2 is measurable, since E1 \ E2 = E1 ∩ Ec

2.
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Thm. Countable Additivity.
If E1, E2, · · · are disjoint measurable sets, then m(t∞

k=1Ek) = ∑∞
k=1 m(Ek).

Lemma. A set E is measurable if and only if for all ε > 0, there exists closed set F ⊂ E such that
m∗(E \ F) < ε.
Cor. Let {Ik} be a countable collection of non-overlapping rectangles, then m (

⋃∞
k=1 Ik) = ∑∞

k=1 m(Ik).

Defn. Increasing/Decreasing Subsets of Rn.
If E1, E2, · · · is a countable collection of subsets of Rn that increases to E in the sense that Ek ⊂ Ek+1 for
all k, and E =

⋃∞
k=1 Ek, then Ek ↗ E.

Similarly, if E1, E2, · · · decreases to E in the sense that Ek+1 ⊂ E for all k, and E =
⋂∞

k=1 Ek, then Ek ↘ E.

Cor. Convergence on Increasing/Decreasing Subsets.
Suppose {Ek} is a collection of measurable sets in Rn:

(i) If Ek ↗ E, then m(E) = limk→∞ m(Ek);

(ii) If Ek ↘ E and m(Ek) < +∞ for some k, then m(E) = limk→∞ m(Ek).

Thm. Approximating Sets.
Suppose E is a measurable subset of Rn. Then, for every ε > 0:

(i) There exists an open set G with E ⊂ G and m(O \ E) < ε;

(ii) There exists a closed set F with F ⊂ E and m(E \ F) < ε;

(iii) If m(E) is finite, there exists a compact set K with K ⊂ E and m(E \ K) < ε;

(iv) If m(E) is finite, there exists a finite union F =
⋃N

k=1 Qk of closed cubes such that m(E4F) < ε,
where E4F = (E \ F) ∪ (F \ E) is the symmetric difference between E and F.

1.4 σ-Algebra and Borel Sets

Defn. σ-algebra.
A collection Σ of subsets of some universal set U is called a σ-algebra if it satisfies:

(i) U ∈ Σ;

(ii) If E ∈ Σ, then Ec ∈ Σ, where Ec is the complement of E in U;

(iii) If Ek ∈ Σ for all k, then
⋃∞

k=1 Ek ∈ Σ.

Rmk. The collection of all subsets of Rn is a σ-algebra.
Rmk. The collection of all Lebesgue measurable sets in Rn is a σ-algebra, denoted asM.

Defn. Borel σ-algebra.
The smallest σ-algebra containing all open sets in Rn is called the Borel σ-algebra, denoted as B, or BRn .
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Elements contained in B are the Borel sets.

Claim. Intersection being Smallest.
Given a collection Σ0 of subsets in Rn. Consider the family F of all σ-algebra that contain Σ0, i.e.,
F = {Σ : Σ is a σ algebra and Σ ⊃ Σ0}. Let ε :=

⋂
Σ∈F Σ. Then:

• ε is a σ-algebra;

• ε ⊃ Σ0;

• ε is the smallest σ-algebra containing Σ0, i.e., if ε′ is a nother σ-algebra containing Σ0, then ε′ ⊇ ε.

Rmk. B (M ( P(Rn), i.e., all Borel sets are measurable.

Defn. Gδ and Fσ Sets: Gσ and Fσ set are the Borel sets, and they are defined as:

(i) The countable intersections of open sets is Gδ sets;

(ii) The countable union of closed sets is Fσ sets.

Thm. Measurable subsets in Rn.
A subset E ⊂ Rn is measurable if and only if:

(i) E differs from a Gδ set of measure zero, i.e., E = H/Z where H is a Gδ set and m(Z) = 0.

(ii) E differs from a Fσ set of measure zero, i.e., E = H ∪ Z where H is a Fσ set and m(Z) = 0.

Rmk. M is a completion of B, i.e.,M is B adding all null sets.

1.5 Invariance of Lebesgue Measure and Non-Measurable Sets

Prop. Translation-Invariance of Lebesgue Measure.
If E ∈ MRn and for any h ∈ Rn, then E + h := {x + h|x ∈ E} is measurable and m(E + h) = m(E).

Prop. Relative Dilation-Invariance of Lebesgue Measure.
If E ∈ MRn and for any δ = (δ1, δ2, · · · , δn), then δE := {(δ1x1, δ2x2, · · · , δnxn)|(x1, x2, · · · , xn) ∈ E} is
measurable and m(δE) = δ1 · δ2 · · · δnm(E).
Rmk. Lebesgue measure is reflection-invariant, that is when E ∈ MRn , then −E := {−x|x ∈ E} is mea-
surable and m(−E) = m(E).

Defn. Equivalence Relationship on [0, 1].
An equivalence relation for any x, y ∈ [0, 1] is defined as follows:

x ∼ y if x− y ∈ Q.

The equivalence classes are [x] := {x + q ∈ [0, 1] : q ∈ Q}. The equivalence classes either are disjoint or
coincide, and they form a partition of [0, 1] =

⊔
α∈A xα.

Axiom. The Axiom of Choice.
Consider a family of non-empty, pairwise disjoint sets {Eα}α∈A in a common set X, there exists a subset
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of X which contains exactly one element from each Eα for α ∈ A.
In other words, there exists a function α 7→ xα (known as a “choice” function) such that xα ∈ Eα for all α.

Defn. Vitali Set.
Let V be a set consisting of exactly one element from each disjoint equivalent class [xα] of [0, 1].

Thm. The Vitali Set is not measurable.
Rmk. This is by the translated set vk = v+ qk = {x + qk : x ∈ V} where {qk} is an enumeration of rationals
in [−1, 1] ∩Q. The inclusion [0, 1] ⊂ ⊔∞

k=1 vk ⊂ [−1, 2], thus 1 ≤ ∞×m(v) ≤ 3, which is a contradiction.

1.6 Measurable Functions

Defn. Measurability of a Function.
Consider real-valued function f defined on a measurable set E ⊂ Rn such that f : E → R ∪ {±∞}. f is
measurable if for any a ∈ R, {x ∈ E : f (x) < a} (denoted as { f < a}) is measurable.
Rmk. f is finite-valued if −∞ < f (x) < +∞ for all x ∈ E.

Cor. Equivalent Definitions of Measurable Function.
f is measurable if and only if { f ≤ a}, or { f > a}, or { f ≥ a} is measurable for all a ∈ R.
If f is finite valued, then f is measurable if and only if {a < f < b} is measurable for all a, b ∈ R.

Defn. Almost Everywhere.
A property if said to hold almost everywhere in E if it holds in E except for a subset of E with measure zero.

Prop. Propositions on Measurable Functions.
The following properties on measurable functions holds:

(i) A finite-valued function f is measurable if and only if f−1(G) is measurable for every open set
G ⊂ R.

(ii) If f is continuous on Rn, then f is measurable.
Rmk. If f is measurable and finite-valued, and Φ is continuous on R, then φ ◦ f is measurable.

(iii) Suppose { fk}∞
n=1 is a sequence of measurable function on E. Then:

sup
n

fn(x), inf
n

fn(x), lim sup
n→∞

fn(x), and lim inf
n→∞

fn(x)

are measurable.
Rmk. Note that we can have {supn fn > a} = ⋃

n{ fn > a}, and infn fn(x) = − supn(− fn(x)).
Rmk. The upper and lower limits can be written as lim supn→∞ fn(x) = infk{supn≥k fn} and
lim infn→∞ fn(x) = supk{infn≥k fn}.

(iv) If { fk}∞
k=1 is a collection of measurable function, and f (x) = limk→∞ fk(x), then f is measurable.

(v) If f and g are measurable, then:

• The integer powers of f k for k ≥ 1 are measurable;
Rmk. For odd powers, { f k > a} = { f > a1/k} and for even power, { f k > a} = { f >

a1/k} ∪ {− f < a1/k}.
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• f + g and f · g is measurable if both f and g are finite-valued.
Rmk. In this case, we note that { f + g > a} = { f > a − g} =

⋃
q∈Q{ f > q > a − g} and

f g = 1
4
[
( f + g)2 − ( f − g)2].

(vi) Suppose f is measurable, and f (x) = g(x) for a.e. x. Then g is measurable.

1.7 Approximation Measurable Functions by Simple Functions

Defn. Characteristic Functions.
The characteristic function (or indicator function) of a set E is defined as:

χE(x) =

1, if x ∈ E,

0, if x /∈ E.

Defn. Step Functions.
A step function is a finite function of the form:

f (x) =
N

∑
k=1

akχRk (x),

where a1, a2, · · · , aN ∈ R and R1, R2, · · · , RN are rectangles.

Defn. Simple Functions.
A simple function is a finite function of the form:

f (x) =
N

∑
k=1

akχEk (x),

where a1, a2, · · · , aN ∈ R and E1, E2, · · · , EN are measurable sets of finite measure.
Rmk. We can assume without the loss of generality that Ek’s are disjoint and ak’s are distinct.

Thm. Approximating Non-Negative Measurable Functions by Simple Functions.
Suppose f is a non-negative measurable function. There exists an increasing sequence of non-negative
simple functions {ϕk(x)}∞

k=1 that converges to f , i.e.:

ϕk(x) ≤ ϕk+1(x) and lim
k→∞

ϕk(x) = f (x) for all x.

Rmk. Here, we define ϕk(x) as:

ϕk(x) =


k, if f (x) ≥ k and |x| < k,

j− 1
2k , if f (x) ∈

[
j− 1

2k ,
j

2k

]
, j ∈ {1, 2, · · · , k · 2k},

0, if |x| ≥ k.

Thm. Approximating Measurable Functions by Simple Functions.
Suppose f is a measurable function. There exists a sequence of simple function { fk}∞

k=1 that satisfies:

|ϕk(x)| ≤ |ϕk+1(x)| and lim
k→∞

ϕk(x) = f (x) for all x.
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Rmk. In particular, we have |ϕk(x)| ≤ | f (x)| for all x and k.
Rmk. The proof is made possible with the construction that: f+ := max{ f , 0},

f− := −min{ f , 0},

so that f± are non-negative measurable functions, where they are respectively approximated by
{

ϕ
(1)
k (x)

}∞

k=1

and
{

ϕ
(2)
k (x)

}∞

k=1
, respectively. Therefore, we have ϕk(x) = ϕ

(1)
k − ϕ

(2)
k .

Thm. Approximating Measurable Functions by Step Functions.
Suppose f is measurable on Rn, then there exists a sequence of step functions {ψk}∞

k=1 that converges
pointwise to f (x) for almost every x.
Rmk. This case can be thought of as an extended case for approximating by simple functions. For every
ε > 0, we can always find Q1, Q2, · · · , QN such that m(E4⋃N

j=1 Qj) ≤ ε for all E. By considering the grid
formed by extending the sides of these cubes, we see that there exist almost disjoint rectangles, and there
are smaller rectangles Rj contained in those rectangles forming a collection of disjoint rectangles such that

m
(

E4⊔M
j=1 Rj

)
≤ 2ε. Thus, we have:

ψ(x) =
M

∑
j=1

χRj(x).

Rmk. For each approximation, it is converging except possibly a set of measure ≤ 2ε. However, all
the variations set Ek := {x : f (x) 6= ψ(c)} in which m(Ek) ≤ 2ε and by having FK =

⋃∞
j=K+1 Ej and

F =
⋂∞

K=1 FK, we have m(F) = 0 and ψk(x)→ f (x) for all x in the complement of F.

1.8 Littlewood’s 3 Principles of Real Analysis

Intuition. Littlewood’s 3 Principles of Real Analysis: Littlewood summarized the connections in the form
of three principles that provide a useful intuitive guide in the initial study of the theory:

(i) Every measurable set is nearly a finite union of cubes;

(ii) Every measurable function is nearly continuous;

(iii) Every almost everywhere convergent sequence of functions is nearly uniformly converged.

Rmk. “Nearly” means that the set of exceptions has small measure.

Thm. Measurable Set Nearly as a Finite Union of Cubes:
(Approximating Sets (iv):) If m(E) is finite, there exists a finite union F =

⋃N
k=1 Qk of closed cubes such

that m(E4F) < ε, where E4F = (E \ F) ∪ (F \ E) is the symmetric difference between E and F.

Thm. Egorov’s Theorem.
Suppose { fk}∞

k=1 is a sequence of measurable function that converges almost everywhere to a finite-valued
function f on a measurable set E of finite measure. Then, for all η > 0, there exists a closed set F ⊂ E such
that:

m(E \ F) < η and fk ⇒ f on F.
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Lemma. Under the same assumption, for all ε > 0 and η > 0, there exists closed set F ⊂ E and N ∈ N

such that:
m(E \ F) < η and | f (x)− fk(x)| < ε for all x ∈ F and k ≥ N.

Rmk. For E = R1 and fk(x) = χ[−k,k](x) converges pointwise to f (x) ≡ 1 since the measure is not finite.

Thm. Lusin’s Theorem.
Suppose f is measurable and finite-valued measurable function on a measurable set E. Then for all ε > 0,
there exists closed set F ⊂ E such that m(E \ F) < ε and f |F is continuous.
Lemma. A simple measurable function f on a measurable set E satisfies the condition that for all ε > 0,
there exists closed set F ⊂ E such that m(E \ F) < ε and f |F is continuous.

2 Integration Theory

2.1 Lebesgue Integral for Simple Functions

Defn. Canonical Form of Simple Function.
The canonical form of a simple function is:

ϕ =
N

∑
k=1

akχEk (x),

where aj’s are distinct and non-zero and Ek’s are disjoint and measurable sets with finite measure.

Defn. Lebesgue Integral on Simple Functions.
The Lebesgue Integral for ϕ = ∑N

k=1 akχEk (x) is:ˆ
ϕ(x)dx :=

N

∑
j=1

ajm(Ej).

Rmk. The integration of ϕ is the same for any representation.

Prop. Properties on Lebesgue Integral for Simple Function.
The following properties holds for Lebesgue integration for simple function:

(i) Linearity:
´
(aϕ + bϕ) = a

´
ϕ + b

´
ϕ;

(ii) Additivity: Let E be a measurable set with finite measure, then we have
´

E ϕ =
´

ϕ · χE;
Rmk. If E and F are disjoint subsets of Rn with finite measure, then

´
EtF ϕ =

´
E ϕ +

´
F ϕ.

(iii) Monotonicity: Let ϕ ≤ ψ, them
´

ϕ ≤
´

ψ;
Rmk. In particular, if ϕ = ψ almost everywhere, then

´
ϕ =

´
ψ.

(iv) Triangular Inequality: If ϕ is a simple function, so is |ϕ|, and |
´

ϕ| ≤
´
|ϕ|.
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2.2 Lebesgue Integral for Bounded Function Supported on a Set of Finite Measure

Defn. Support of Function.
The support of a function f is defined as:

supp( f ) := { f 6= 0}.

f is supported on a set E if f = 0 outside of E, i.e., supp( f ) ⊂ E.
In this stage, we are interested in f being bounded, measurable such that m(supp( f )) < +∞.
For such functions, there exists a sequence of simple functions {ϕn}∞

n=1 with each ϕn bounded and sup-
ported on a finite measurable set, and ϕn(x)→ f for all x.

Thm. Convergence of Simple Approximation Function.
Let f be a bounded function supported on a set E of finite measure. If {ϕn}∞

n=1 is any sequence of simple
functions bounded by M, supported on E, and with ϕn(x)→ f (x) or a.e. x, then:

(i) The limit limn→∞ ϕn(x)dx exists;
Rmk. Here, we have that −MχE ≤ ϕk ≤ MχE.
Rmk. The proof wants to show that {

´
ϕk}∞

k=1 is a Cauchy sequence.

(ii) If f = 0 a.e., then the limit limn→∞
´

ϕn = 0.

Defn. Lebesgue Integral on Bounded Function Supported on a Set of Finite Measure.
For a bounded function f supported on a set of finite measure, the integral is:ˆ

f (x)dx = lim
n→∞

ˆ
ϕn(x)dx,

where {ϕn(x)}∞
n=1 is any sequence of simple functions satisfying that:

• |ϕN | < M;

• Each ϕn is supported on a support of f ;

• ϕn(x)→ f (x) for a.e. x as n tends to +∞.

Rmk. We need to show that the definition is independent with the choice of sequence. Suppose {ϕn}∞
n=1

and {ψn}∞
n=1 are two qualified sequences, then we have {ηn}∞

n=1 with ηn = ϕn − ψn, in which {ηn}∞
n=1 is

consisted of simple functions bounded by 2M, supported on a set of finite measure, and ηn → 0 a.e. as n
tends to +∞. Hence, the two limits limn→∞

´
ϕn = limn→∞

´
ψn.

Prop. Properties on Lebesgue Integral for Bounded Function Supported on a Set of Finite Measure.
The properties remains the same as for bounded function supported in a set of finite measure:

(i) Linearity:
´
(a f + bg) = a

´
f + b

´
g;

(ii) Additivity: If E and F are disjoint subsets of Rn with finite measure, then
´

EtF f =
´

E f +
´

F f ;

(iii) Monotonicity: Let f ≤ g, them
´

f ≤
´

g;
Rmk. In particular, if f = g almost everywhere, then

´
f =

´
g;

(iv) Triangular Inequality: | f | is also bounded, and |
´

f | ≤
´
| f |.
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Thm. Bounded Convergence Theorem.
Suppose that { fk}∞

k=1 is a sequence of measurable functions bounded by M and supported on a set E of
finite measure, in which fk → f a.e. as k → ∞. Then, f is measurable, bounded, and supported on E for
a.e. Moreover: ˆ

| fn − f | → 0 as n→ ∞,

hence implying that: ˆ
fn →

ˆ
f as n→ ∞.

Rmk. In constructing this theorem, by Egorov’s Theorem, there exists closed sets Fη ⊂ E such that fn ⇒ f
on Fη , and by m(E \ Fη) implies that

´
| fn − f | =

´
Fη
| fn − f |+

´
E\Fη
≤ εm(E) + 2Mη.

Thm. Riemann and Lebesgue Integral.
Suppose f (x) is Riemann integrable on [a, b]. Then f is Lebesgue measurable, and:ˆ R

[a,b]
f (x)dx =

ˆ L
[a,b]

f (x)dx.

Rmk. The Riemann integral is based on bounded functions, and it uses a partition by Γ which forms two
sequences of step function, which is:

{ϕk}∞
k=1 and {ψk}∞

k=1,

in which each element is absolutely bounded by M and:

ϕ1(x) ≤ ϕ2(x) ≤ · · · ≤ f (x) ≤ · · · ≤ ψ2(x) ≤ ψ1(x).

By definition of Riemann integral, we have that:

lim
k→∞

ˆ R
[a,b]

ϕk(x)dx = lim
k→∞

ˆ R
[a,b]

ψk(x)dx =

ˆ R
[a,b]

f (x)dx.

By the definition of the step functions, the integrals on ϕk(x) and ψk(x) are equal for Riemann and
Lebesgue integration. Let ϕ̃ and ψ̃ be their respective limits, then ϕ̃ ≤ f ≤ ψ̃. As they are both measurable,
then the bounded convergence theorem, the integrals converges at the limit, which gives:ˆ L

[a,b]

(
ϕ̃(x)− ψ̃(x)

)
dx = 0,

which then implies ϕ̃ = ψ̃ a.e., thus f is measurable. Then by ϕk → f a.e., we have the two integrations
generating the same result.

2.3 Lebesgue Integral for Non-negative Measurable Function

Defn. Lebesgue Integral for Non-negative Measurable Function.
Let f ≥ 0 be a measurable function, we defined:ˆ

f (x)dx := sup
g

ˆ
g(x)dx,

where the supremum is tajkn over all measurable functions g such that 0 ≤ g ≤ f and g is bounded and
supported on a set of finite measure.
Def. f is Lebesgue measurable if

´
f (x)dx < +∞.
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Prop. Properties on Lebesgue Integral for Non-negative Measurable Function.
The following properties holds:

(i) Linearity: For a, b > 0,
´
(a f + bg) = a

´
f + b

´
g;

(ii) Additivity: If E and F are disjoint subsets of Rn with finite measure, then
´

EtF f =
´

E f +
´

F f .

(iii) Monotonicity: Let 0 ≤ f ≤ g, them
´

f ≤
´

g;
Rmk. Note that

´
g can be +∞ as we are not assuming that g is integrable;

(iv) If g is integrable, and 0 ≤ f ≤ g, then f is integrable;

(v) If f is integrable, then f < +∞ a.e.;

(vi) If
´

f = 0, then f = 0 a.e.

Lemma. Fatou’s Lemma.
Suppose that { fk}∞

k=1 is a sequence of non-negative measurable functions such that fk → f a.e. Then:ˆ
f ≤ lim inf

n→∞

ˆ
fk.

Rmk. By construction,
´

f = sup0≤g≤ f ,bounded and supported
´

g, if we let gk := min{g, fk} ≤ g, thus it is
bounded and supported by supp(g). By the bounded convergence theorem, we have

´
g = limn→∞

´
gk ≤´

fk and since
´

gk ≤
´

fk, we have that:ˆ
f = lim

k→∞

ˆ
gk ≤ lim inf

n→∞

ˆ
fk.

Cor. Monotone Convergence Theorem.
Suppose f is a non-negative measurable function, and { fk}∞

k=1 is a sequence of non-negative measurable
function with fn(x) ≤ f (x) and fk(x)→ f (x) for a.e. x. Then limk→∞

´
fk =

´
f .

Cor. Suppose { fk}∞
k=1 is a sequence of non-negative measurable functions such that fk ↗ f , then

limk→∞
´

fk =
´

f .
Rmk. By Fatou’s Lemma,

´
f ≤ lim infk→∞

´
fk and fk ≤ f implies that

´
fk ≤

´
f and hence lim supk→∞

´
fk ≤´

f .

Cor. Monotone Convergence Theorem for Series.
Consider the series ∑∞

k=1 ak(x), where ak(x) ≥ 0 is measurable for every k ≥ 1. Then:ˆ (
∞

∑
k=1

ak(x)

)
dx =

∞

∑
k=1

(ˆ
ak(x)dx

)
.

Rmk. If ∑∞
k=1 (

´
ak(x)dx) is finite, then ∑∞

k=1 ak(x)dx converges for a.e. x.
Rmk. This is f j(x) = ∑

j
k=1 ak(x)↗ ∑∞

k=1 ak(x) through monotone convergence theorem.

2.4 Lebesgue Integral for Measurable Function

Defn. Lebesgue Integral for Measurable Function:
Let f be measurable function. f is integrable if | f | is integrable (as | f | = f+ + f−).
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Hence, the Lebesgue Integral of f is defined to be:ˆ
f :=

ˆ
f+ −

ˆ
f−.

Prop. Properties of Lebesgue Integrable functions.
The properties remains the same as for general integrable functions:

(i) Linearity:
´
(a f + bg) = a

´
f + b

´
g;

(ii) Additivity: If E and F are disjoint subsets of Rn with finite measure, then
´

EtF f =
´

E f +
´

F f ;

(iii) Monotonicity: Let f ≤ g, them
´

f ≤
´

g;

(iv) Triangular Inequality: | f | is also bounded, and |
´

f | ≤
´
| f |.

Prop. Integral Converging to Zero for Some Set.
Suppose f is integrable on Rn. Then for every ε > 0:

(i) There exists a ball B such that
´

Bc | f | < ε;
Rmk. The integrable functions does not necessarily vanishes near ∞, that is if f is integrable, then
lim|x|→∞ f (x) = 0 is false.
Rmk. We may consider Bk as ball centered at origin with radius k, in which fk := f · χBk ↗ f .
Hence by monotone convergence theorem, we have limk→∞

´
fk =

´
f < ∞ and thus |

´
f −

´
fk| =∣∣∣´Bc

k
f
∣∣∣ < ε for k ≥ N.

(ii) There exists δ > 0 such that
´

E | f | < ε for any measurable set E such that m(E) < δ.

Thm. Dominance Convergence Theorem.
Suppose { fk}∞

k=1 is a sequence of measurable function such that fk → f a.e. Assume that | fk| ≤ g a.e.
where g is integrable. Then limk→∞

´
fk =

´
f .

Rmk. In fact,
´
| fk − f | → 0 as k→ +∞.

Rmk. Let −g ≤ fk ≤ g, then we can have
´
( f + g) ≤ lim infk→∞

´
( fk + g) by Fatou’s Lemma. Then,

likewise, we have −
´

f ≤ lim infk→∞(−
´

fk) = − lim supn→∞
´

fk.

Defn. Complex-valued Functions: A complex-valued function can be written as:

f (x) = u(x) + iv(x), where u(x) = Re f (x) and Im f (x).

Rmk. Hence, f is integrable if | f | :=
√
|u|2 + |v|2 is integrable, that is if and only if u and v are integrable.

Defn. Lebesgue Integral over Complex-valued Functions.
The Lebesgue integral of complex valued is defined to be:ˆ

f (x)dx =

ˆ
u(x)dx + i

ˆ
v(x)dx.

Rmk. Addition and scalar multiplication is closed for complex-valued f measurable function on E.
Rmk. The collection of all complex-valued integrable functions on a measurable subset E ⊂ Rn forms a
vector space over C.
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2.5 The Space of Integrable Functions

Def. Norm in Space of Integrable Functions L1(E).
For any f ∈ L1(Rn), we define the norm of f to be:

‖ f ‖L1 :=
ˆ

Rn
| f (x)|dx,

where the norm induces the following properties:

(i) Linearity: ‖λ f ‖L1 = |λ| · ‖ f ‖L1 for all λ ∈ C;

(ii) Triangle Inequality: ‖ f + g‖L1 ≤ ‖ f ‖L1 + ‖g‖L1 ;

(iii) ‖ f ‖L1 = 0 implies that f = 0 a.e. on Rn;

(iv) d( f , g) := ‖ f − g‖L1 induces L1(Rn) into a metric space.

Thm. L1(Rn) is Complete.
L1(Rn) is complete with the metric d( f , g) = ‖ f − g‖L1 .
Cor. If f is convergent to f ∈ L1, then there is a subsequence { fkj

}kj∈Z+ of { fn}∞
n=1 so that fkj

→ f
pointwise a.e. x.
Rmk. This is not necessarily true if we want the entire sequence to converge to f .

Defn. Dense Families of Function.
A family of integrable function G is dense in L1(Rn) if for all f ∈ L1(Rn) and for all ε > 0, there exists
g ∈ G such that ‖ f − f ‖L1 < ε.

Lemma. Dense Families in L1(Rn).
The following families are dense in L1(Rn):

(i) Simple functions;

(ii) Step functions;

(iii) Continuous functions with compact support, denoted CC(R
n).

Strategy. Strategy in Proving Properties for L1(Rn).
If we want to prove some properties for all integrable functions, we:

(i) prove the property holds for a dense family;

(ii) Use a limiting argument to conclude for all L1(Rn).

Appl. Invariance of Lebesgue Integral.
The following invariance holds for Lebesgue integration with f ∈ L1(Rn), h ∈ Rn, and δ > 0:

ˆ L
Rn

f (x− h)dx =

ˆ L
Rn

f (x)dx;

δn
ˆ L

Rn
f (δx)dx =

ˆ L
Rn

f (x)dx;

ˆ L
Rn

f (−x)dx =

ˆ L
Rn

f (x)dx.
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Rmk. The proof was made first on simple functions. Then, for the complex-valued functions, the conclu-
sions can be made from fh = χEh , which holds for all L1(Rn).
Cor. By such, we can conclude the commutativity for convolution of f and g by:

f ∗ g(x) :=
ˆ

Rn
f (y)g(x− y)dy =

ˆ
Rn

f (x− y)g(y)dy = g ∗ f (x).

Appl. Translation and Continuity.
For any f ∈ L1(Rn), then ‖ fh − f ‖ → 0 as h→ 0, where fh = f (x + h).
Rmk. The proof follows along the continuous function with compact support, say g ∈ CC(R

n) in which
|g(x− h)− g(x)| < ε for all x ∈ Rn if |h| < δ, in which the argument follows quickly through:

‖ fh − f ‖L1 =

ˆ
| fh − f |

=

ˆ
| fh − gh + gh − g + g− f | ≤

ˆ
| fh − gh|+

ˆ
|gh − g|+

ˆ
|g− f |

= 2‖ f − g‖L1 + ‖gh − g‖L1 < 3× ε

3
< ε

as |h| < δ.

2.6 Fubini’s Theorem

Defn. Slices and Mapped Functions.
Let x ∈ Rm, y ∈ Rn, and function f (x, y) be defined on E := Rm ×Rn, the slices are defined as:

Ex := {y ∈ Rn : (x, y) ∈ E},

Ey := {x ∈ Rm : (x, y) ∈ E}.

At the same time, we concern the following functions:

fx(y) := f (x, y),

f y(x) := f (x, y).

Thm. Fubini’s Theorem.
Let f ∈ L1(Rm+n), then:

(i) for a.e. x ∈ Rm, the slice fx is measurable and integrable in Rn,

(ii) the function x 7→
´

Rn f (x, y)dy is defined for a.e. x ∈ Rm, measurable and integrable on Rm, and

(iii)
¨

Rm+n
f (x, y)dxdy =

ˆ
Rm

(ˆ
Rn

f (x, y)dy
)

dx =

ˆ
Rn

(ˆ
Rm

f (x, y)dx
)

dy.

Rmk. The proving strategy is to let the family of functions satisfying Fubini’s Theorem as F , and prove by
following steps:

(i) prove that F is closed under linear combination, so we reduce the proof to non-negative functions,

(ii) prove that F contains the limit of monotonic sequences, then we reduce the proof to simple, thus
characteristic functions,

(iii) prove that for E being a Gδ-set in Rm+n with finite measure, then χE ∈ F ,
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(iv) prove that for N being a null set in Rm+n, then χN ∈ F , and the slices Nx are also null set in Rn, by
such, we know that this applies for all finite measurable set,

(v) for any f ∈ L1(Rm+n), then f ∈ F .

Rmk. The converse is not necessarily true. If f is measurable in Rm+n, and T :=
´

Rm
(´

Rn f (x, y)dy
)

dx is
finite, f is not necessarily integrable.

Thm. Tonelli’s Theorem.
Let f (x, y) be non-negative measurable function in Rm+n, then:

(i) for a.e. x ∈ Rn, the slice fx is measurable in Rn,

(ii) the function x 7→
´

Rn fxdy (taking values in R+ ∪ {+∞}) is measurable, and

(iii)
¨

Rm+n
f (x, y)dxdy =

ˆ
Rm

(ˆ
Rn

f (x, y)dy
)

dx =

ˆ
Rn

(ˆ
Rm

f (x, y)dx
)

dy. (This could be infinite).

Rmk. Fubini-Tonelli Theorem.
We use the two theorems in the following cases:

(i) Use Tonelli’s theorem on | f | to show that f ∈ L1(Rm+n), and then

(ii) use Fubini for
˜

Rm+n f (x, y)dxdy.

Rmk. In proving Tonelli’s Theorem, we construct that:

fk(x, y) :=

0, if |(x, y)| > k,

min{ f (x, y), k}, if |(x, y)| ≤ k.

Lemma. Exterior Measure on Product of Sets.
Let E1 ⊂ Rm and E2 ⊂ Rn, then:

m∗(E1 × E2) ≤ m∗(E1)m∗(E2),

so if one set has exterior measure zero, then the exterior measure of product must be zero.

Prop. Measure of Product of (Measurable) Sets.
Let E1 ⊂ Rm and E2 ⊂ Rn be measurable, then E := E1 × E2 is measurable in Rm+n, and:

m(E) = m(E1)m(E2),

so if one set has measure zero, then the measure of product must be zero.

Cor. Suppose f is a non-negative function on Rn, and let:

A := {(x, y) ∈ Rn ×R : 0 ≤ y ≤ f (x)}.

Then:

(i) f is measurable on Rd if and only if A is measurable on Rn+1,

(ii) if the conditions in (i) holds, then
´

Rn f (x)dx = mRn+1(A).
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3 Differentiation

3.1 Differentiation of the Integral

Defn. Average of Integration.
Let f ∈ L1(Rn), consider the set functionM(Rn) 3 E 7→

´
E f , and we let: 

E
f =

1
m(E)

ˆ
E

f .

Thm. Lebesgue Differentiation Theorem.
Let f ∈ L1(Rn), then:

lim
Q→x

1
m(Q)

ˆ
Q

f = f (x),

for a.e. x ∈ Rn.
Rmk. Q works for cubes and balls, but only certain classes of rectangles works.

3.2 Hardy-Littlewood Maximal Function

Def. Hardy-Littlewood Maximal Function.
Let h ∈ L1(Rn), we define its Hardy-Littlewood maximal function of h as:

Mh(x) = h∗(x) := sup
Q3x

1
m(Q)

ˆ
Q
|h|.

Rmk. The Hardy-Littlewood maximal function of f ∈ L(Rn) follows:

• 0 ≤ f ∗(x) ≤ +∞,

• For any λ > 0, { f ∗ > λ} is open in Rn implies that f ∗ is measurable,

• f ∗ might not be in L1(Rn).

Thm. Hardy Littlewood Theorem.
If f ∈ L1(Rn), then f ∗ belongs to weak L1(Rn), namely, there exists a constant C (independent of f and
α) such that ∀α > 0:

m({ f ∗ > α}) ≤ C
α

ˆ
Rn
| f |.

Lemma. Elementary Version of Vitali Lemma.
Suppose F = {Q1, · · · , QN} is a finite collection of (open or closed) cubes in Rn. Then ∃ a disjoint
sub-collection Qi1 , Qi2 , · · · , Qie of F such that:

m

(
N⋃

i=1

Qi

)
≤ 3n

`

∑
j=1

m(Qij),

i.e.:

3−nm

(
N⋃

i=1

Qi

)
≤ m

⊔̀
j=1

Qij

 .
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Defn. Locally Integrable.
f is locally integrable ( f ∈ L1

loc(R
n)) if f ∈ L1(B) for any ball B in Rn. Lebesgue Differentiation Theorem

holds if we assume f ∈ L1
loc(R

n).
Rmk. For any measurable set E ⊂ Rn, χE ∈ L1

loc(R
n), but not necessarily in Ł1(Rn).

Defn. Lebesgue Density Point.
Let E be a measurable set and x ∈ Rd, x is a point of Lebesgue density of E if:

lim
m(B)→0,x∈B

m(B ∩ E)
m(B)

= 1.

Rmk. A.e. x ∈ E is a Lebesgue density point of E and a.e. x /∈ E is not a Lebesgue density point of E.

Defn. Lebesgue Point.
A point x is referred as a Lebesgue point of f if:

lim
Q→x

 
Q
| f (y)− f (x)|dy = 0,

and this holds for a.e. x ∈ Rn.

Cor. Almost Every Point is Lebesgue.
If f ∈ Lloc(R

n), then a.e. x ∈ Rn is Lebesgue point.

3.3 Approximation to Identity

Defn. The Scaling Function.
Let k be a bounded integrable function such that

´
k = 1 in Rn. Then the scaling function is:

kδ(x) :=
1
δn k

( x
δ

)
.

The scaling is due to the fact that:ˆ
Rn

kδ(x)dx =

ˆ
Rn

1
δn k

( x
δ

)
dx =

ˆ
Rn

k(x)dx = 1.

Rmk. By the same token, we have
´

Rn |kδ| =
´

Rn |k|.
Rmk. If k has compact support, say BR0 , then kδ is supported on BδR0 .

Defn. Good Kernels.
A good kernel Kδ(x) is integrable and satisfies the following for all δ > 0:

(i)
´

Rd Kδ(x)dx = 1,

(ii)
´

Rd |Kδ(x)|dx ≤ A, and

(iii) for every η > 0,
´
|x|≥η |Kδ(x)|dx → 0 as δ→ 0,

where A is a constant depending on δ.
Prop. Properties with f ∗ kδ.
For any integrable function f in Rn, consider the convolution ( f ∗ kδ)(x), which is integrable that:
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• Let k be a bounded integrable function in Rn, such that
´

k = 1, and suppose k has compact support,
then:

( f ∗ kδ)(x)→ f (x) as δ→ 0,

for any x that is a Lebesgue point of f .

• Let k be a bounded integrable function in Rn such that
´

k = 1. Then f ∗ kδ → f in L1 as δ→ 0+.

• Let k be a bounded integrable function in Rn such that
´

k = 1. Suppose k(x) = O
(

1
|x|n+λ

)
for some

λ > 0 (i.e., |k(x)| ≤ c
|x|n+λ for |x| large enough). Then f ∗ kδ(x) → f (x) for x which is a Lebesgue

point of f .

• If k ∈ Cm
c (R

n), then f ∗ k is continuous and bounded.

Rmk. By (ii), the convergence in L1 implies that there exists δk → 0+ such that f ∗ kδj(x)→ f (x) for a.e. x.
Rmk. For (iii), we have that:

1
|x|n χ{|x|>1} /∈ L1(Rn),

1
|x|n+ε

χ{|x|>1} ∈ L1(Rn).

Rmk. For (iv), we have that:
∂xi ( f ∗ k(x)) = f ∗ (∂xi K(x)).

Ex. Kernels for PDEs:

• The Poisson kernel is:
Py(x) :=

1
y

K
(

x
y

)
=

1
π

y
x2 + y2 ,

for the upper half plane Laplace equation.

• The heat kernel is:
Ht(x) =

1
(4πt)n/2 e−|x|

2/(4t),

solving the global Cauchy for Heat equation.

Lemma. Average Function.
Suppose that f is integrable on Rd, and that x is a Lebesgue point of f . Let:

α(r) =
1
rn

ˆ
|y|≤r
| f (x− y)− f (x)|dy, whenever r > 0.

Then α(r) is continuous function of r > 0, and α(r)→ 0 as r → 0 and α(r) is bounded for all r > 0.

4 Hilbert Space

4.1 L2(Rn) Space

Defn. L2 Space.
L2(Rn) is the collection of complex-valued measurable functions in Rn such that

´
Rn | f (x)|2dx < +∞.

The L2-norm of f is defined as ‖ f ‖L2 :=
(´
| f (x)|2dx

)1/2.
Rmk. The following holds:

(i) For λ ∈ C, ‖λ f ‖L2 = |λ| · ‖ f ‖L2 .
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(ii) For f , g ∈ L2(Rn), and if f = g a.e., then ‖ f − g‖L2 = 0 (identified as the same element).

(iii) f ∈ L2(E) if f · χE ∈ L2(Rn).

(iv) For 1 ≤ p < +∞, ‖ f ‖Lp = (
´
| f (x)|pdx)1/p.

Defn. Inner Product in L2.
On L2(Rn), we define the inner product as:

〈 f , g〉 =
ˆ

f (x) · g(x)dx.

Rmk. We check that f g is integrable as
´
| f g| =

´
| f | · |g| ≤

´ 1
2 (| f |2 + |g|2) < +∞. (if a, b > 0, then

ab ≤ 1
2 (a2 + b2)).

Rmk. Cauchy-Schwartz Inequality indicates |〈 f , g〉| ≤ ‖ f ‖L2 · ‖g‖L2 .

Prop. Properties on the L2 Space.

(i) Inner product 〈•, •〉 satisfies Cauchy-Schwartz.

(ii) For any g ∈ L2(Rn) fixed, f ∈ L2(Rn) 7→ 〈 f , g〉 ∈ C is linear in f and 〈g, f 〉 = 〈 f , g〉.

(iii) L2(Rn) is a vector space over C and ‖ • ‖L2 is a norm. (Distance is d( f , g) = ‖ f − g‖.)

Thm. L2 Space is Complete.
The space of L2(Rn) is complete with respect to the metric from the norm, i.e., all Cauchy sequences
converges.
Rmk. The proof involves the construction of:

SK( f )(x) = fn1(x) +
K

∑
k=1

( fnk+1(x)− fnk (x)), and SK(g)(x) = | fn1(x)|+
K

∑
k=1
| fnk+1(x)− fnk (x)|,

where fnk is subsequence in which the L2 norm of there differences are within 2−k. Then, ‖SK(g)‖ with
MCT implies that f ∈ L2 and the construction of SK( f ) supports that fnk converges to f by DCT. Eventu-
ally, by triangle inequality:

‖ fn − f ‖ ≤ ‖ fn − fnk‖+ ‖ fnk − f ‖ < ε.

Thm. L2 Space is Separable.
The space L2(Rn) is separable, in the sense that there exists a countable collection { fk} of elements in
L2(Rd) such that their linear combinations are dense in L2(Rd).
Rmk. Here, we constructed the collection C of characteristic functions χD, where D is a dyadic cube in Rn,
with coefficients being complex numbers whose real and imaginary parts are rational, i.e., D :=

[
j

2k , j+1
2k

]
for integers j and k.

4.2 Hilbert Space

Defn. Hilbert Space.
A set H is a Hilbert space over C if:
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(H1) H is a vector space over C.

(H2) H is equipped with an inner product 〈•, •〉 such that:

• For any g ∈ H fixed, f 7→ 〈 f , g〉 is linear on H.

• 〈 f , g〉 = 〈g, f 〉.

• 〈 f , f 〉 ≥ 0 for all f ∈ H with equality if and only if f = 0 in H.

(P) Properties: ‖ f ‖ = 〈 f , f 〉1/2 and Cauchy-Schwartz with Triangle Inequality holds.

(H3) H is complete with respect to the metric d( f , g) = ‖ f − g‖. (not required for Pre-Hilbert Space, but
Pre-Hilbert Space can be extended to Hilbert Space, called the completion of the Pre-Hilbert Space
by having objects as all Cauchy sequences).

(H4) H is separable, i.e., H has a dense subset which is countable.

Rmk. Banach space is a normed vector space with (H3).

Ex. Examples of Hilbert Space.

(i)
(

L2(Rn), 〈•, •〉
)

is a Hilbert space over C.

(ii) CN :=
{
(z1, · · · , zN) : zi ∈ C

}
with for z, w ∈ CN that 〈z, w〉 = ∑N

i=1 ziwi (or the standard Euclidean
inner product) is a Hilbert space.

(iii) `2(Z) :=
{
(· · · , a−1, a0, a1, · · · ) : ai ∈ C, ∑∞

−∞ |an|2 < ∞
}

with inner product being the infinite sum
of the product akbk is a Hilbert Space (also classified as (i)).

(iv) W1,2(Rn) = { f ∈ L2(Rn) : |∇ f | ∈ L2(Rn)} with 〈 f , g〉 = 〈 f , g〉L2 + ∑n
i=1 〈∂i f , ∂ig〉 is a Hilbert space

(also classified as (i)).

Rmk. All the Hilbert space can be classified as (i) or (ii).

4.3 Orthogonality and Basis

Defn. Orthogonality.
f , g ∈ H are orthogonal, i.e. f ⊥ g if 〈 f , g〉 = 0.
Rmk. Pythagorean theorem: If f ⊥ g, then ‖ f + g‖2 = ‖ f ‖2 + ‖g‖2.

Defn. Orthonormal Collection.

A collection {eα}α∈A in H is orthonormal if
〈
eα, eβ

〉
=

1, if α = β,

0, if α 6= β.
.

Rmk. Since H has a countable dense subset, any orthonormal collection in H has at most countably many
element (since the separation has to be ‖eα − eβ‖ = ‖eα‖2 + ‖ − eβ‖2 = 2).

Prop. Projection onto Orthonormal Collection.
If {ek} is orthonormal in H, and f = ∑N

k=1 akek ∈ H, then f ‖2 = ∑N
k=1 |〈 f , ek〉|2.
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Defn. Orthonormal Basis.
An orthonormal collection {ek} of H is an orthonormal basis if the finite linear combination of ek’s over C

are dense in H.

Thm. Equivalent Conditions for Orthonormal Collection.
Let {ek} be an orthonormal collection in H, the following are equivalent:

(i) Finite linear combinations of {ek} are dense in H.

(ii) If f ∈ H and
〈

f , ej
〉
= 0 for all j ∈N, then f = 0.

(iii) If f ∈ H and SN( f ) = ∑N
k=1 akek ∈ H with ak := 〈 f , ek〉, then SN( f ) → f in the norm as N → +∞.

(Namely, ∑N
k=1 〈 f , ek〉 ek → f .)

(iv) (Parseval’s Identity) If f ∈ H, then ‖ f ‖2 = ∑k∈N |〈 f , ek〉|2.

Rmk. All above vases implies that the basis is orthonormal.

Thm. Orthonormal Basis of Hilbert Space.
Every Hilbert space has an orthonormal basis.
Rmk. The construction is by Gram-Schmidt process.

4.4 Unitary Mapping

Defn. Unitary Isomorphisms.
Given 2 Hilbert spacesH andH′, with (〈•, •〉H , 〈•, •〉H′), a mapping T : H → H′ is a unitary isomorphism
if:

(i) T is a linear map, i.e., T(α f + βg) = αT( f ) + βT(g) for all α, β ∈ C and f , g ∈ H.

(ii) T is a bijection.

(iii) ‖T( f )‖H′ = ‖ f ‖H for all f ∈ H.

Rmk. (iii) guarantees that inner product is preserved, i.e.:

〈 f , g〉 = 1
4

[
‖ f + g‖2 − ‖ f − g‖2 + i

(∥∥∥∥ F
i
+ G

∥∥∥∥2
−
∥∥∥∥ F

i
− G

∥∥∥∥2
)]

.

Cor. Unitary Isomorphisms for Infinite Dimensional Hilbert Spaces.
Any two infinite dimensional Hilbert spaces are unitarily equivalent, i.e., there exists a unitary isomor-
phism between them.
Rmk. The construction is by enumerating an orthonormal basis {e1, e2, · · · } and {e′1, e′2, · · · } for H1 and
H2 respectively, and have T : H1 → H2, ei 7→ e′i .
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4.5 Fourier Series

Appl. Conventions to L2([−π, π]) Space.
We consider L2([−π, π]) with inner product 〈 f , g〉 = 1

2π

´ π
−π f (x)g(x)dx.

Prop. Orthonormal Basis in L2([−π, π]).
{e−ikx}k∈Z is an orthonormal basis for L2([−π, π]).
Rmk. By Euler’s Formula, we can construct another orthonormal basis of {cos kx, sin kx}k∈N.
Rmk. If f is piecewise continuous (or Riemann integrable) on [−π, π], then f ∈ L2([−π, π]), which extend
f to be defined on R with periodicity of 2π.

Thm. Approaching from Fourier Series.
We write the Fourier series of f (x) (integrable on [−π, π]) as:

f (x) ∼
∞

∑
n=−∞

aneinx,

then:

(i) If ak = 0 for all k ∈ Z, then f (x) = 0 a.e. x.

(ii) ∑∞
k=−∞ akr|k|eikx → f (x) for a.e. x as r → 1−.

Rmk. (ii) is a consequence of the Poisson kernel.

Thm. Convergence of Fourier Series.
Suppose f ∈ L2([−π, π]), then:

(i) (Parseval’s Relation) ∑∞
n=−∞ |an|2 = 1

2π

´ π
−π | f (x)|2dx.

(ii) The mapping f 7→ {an} is a unitary correspondence between L2([−π, π]) and `2(Z).

(iii) The Fourier series of f converges to f in the L2-norm, that is:
1

2π

ˆ π

−π
| f (x)− SN( f )(x)|2dx → 0 as N → ∞,

where SN( f ) = ∑N
n=−N aneinx.

Rmk. If f ∈ L2([−π, π]) and f (x) = ∑∞
k=−∞ akeikx, then f ′(x) = ∑∞

k=−∞ kakeikx, thence:

1
2π

ˆ π

−π
| f ′(x)|2dx =

∞

∑
k=−∞

|kak|2.

Therefore, f ′(x) ∈ L2([−π, π]) is a better decay for |ak| as k→ ±∞.

5 Abstract Measure Space

5.1 Abstract Measure

Defn. Measure Space.
A measure space on a set X is a triple (X,M, µ) where:
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(i) M is a σ-algebra, which is a non-empty collection of subsets of X closed under complements,
countable unions, and countable intersections. Elements inM are the measurable sets.

(ii) µ : M → [0,+∞] is a function satisfying that for any countable collection of disjoint sets in M,
E1, E2, · · · satisfies µ (

⊔
k Ek) = ∑k µ(Ek). µ(E) is the measure of E.

Rmk. (Lebesgue-Radon-Nikodym Theorem) All the measures must be a combination of the following:

(i) Let X = {xk}, M = P(X), define µ({xk}) = µk where {mk} is a sequence of numbers in [0,+∞].
For any E ∈ M, we have µ(E) = ∑

µk
k:xk∈E.

(ii) Let X ∈ Rn, M = {Lebesgue measurable sets} and for any E ∈ M, µ(E) =
´

E f dx where f is a
given non-negative measurable function on Rn.

5.2 Exterior Measure

Defn. Outer Measure.
An outer measure on a set X is a function µ∗ from all subsets of X to [0,+∞] satisfying that:

(i) µ∗(∅) = 0.

(ii) If E1 ⊂ E2, then µ∗(E1) ≤ µ∗(E2).

(iii) For any countable collection of sets E1, E2, · · · in X, µ∗(
⋃

k Ek) ≤ ∑k µ∗(Ek).

Defn. Carathéodory Measurable Sets.
Given E ⊂ X, E is Carathéodory measurable if for any A ⊂ X:

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

Rmk. This is equivalent to the definition of Lebesgue measurable sets.
Rmk. By (iii) in outer measure, µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ Ec) is satisfies.

Thm. Outer Measure Forms Measure.
Given a outer measure µ∗ on a set X, the collection M of all Carathéodary measurable set form a σ-
algebra. Moreover, µ∗ restricted toM is a measure.
Rmk. Any set of outer measure 0 is Carathéodory measurable. Since if µ∗(Z) = 0, then µ∗(A) ≥ µast(A ∩
Z) + µ∗(A ∩ Zc) = µast(A ∩ Zc) by monotonicity.
Defn. σ-finite.
We say a measure space is (X,M, µ) is σ-finite if X can be written as the union of countably many mea-
surable sets of finite measure.

Defn. Borel Algebra.
The Borel σ-algebra, Bx denotes the smallest σ-algebra containing all open sets.

Defn. Metric Outer Measure.
An outer measure µ∗ on (X, d) is a metric outer measure if:

µ∗(A ∪ B) = µ∗(A) + µ∗(B) for any A, B ⊂ X,
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such that:
d(A, B) := inf{d(x, y) : x ∈ A, y ∈ B} > 0.

Thm. Metric Outer Measure Forms Measure.
If µ∗ is a metric outer measure on (X, d), then Borel sets in X are Carathéodory measurable and µ∗ re-
stricted to Bx is a measure.
Rmk. From the previous theorem, M is a σ-algebra already. Then, we need to show that all open/closed
sets are Carathéodory measurable. Here for a closed set F, we define Ek := {x ∈ A ∩ Fc : d(x, F) ≥ 1

k}.
We prove that limk→∞ µ∗(A ∩ Fc) by letting Ck := Ek+1 \ Ek.

Defn. Borel Set.
Given a metric space (X, d), a measure µ defined on all Borel sets of X is the Borel Set.

Prop. Suppose the Borel measure µ is finite on all balls in X with finite radii, then for any Borel set E, any
ε > 0, there exists open set G ⊃ E, closed set F ⊂ E such that µ(G \ E) < ε and µ(E \ F) < ε.

Lemma. Convergence for Monotone Sequences.
Let (X,M, µ) be a measure space, if measurable sets Ek ↗ E, then µ(Ek)↗ µ(E).

5.3 Pre-Measure

Defn. Pre-Measure.
Given a set X, an algebra in X is a non-empty collection of subsets of X that are closed under complements,
finite unions, and finite intersections. A pre-measure on an algebra A is a function µ0 : A → [0,+∞] that
satisfies:

• µ0(∅) = 0.

• If A1, A2, · · · is a countable collection of disjoint sets in A with
⊔

j Aj ∈ A, then:

µ0

(⊔
k

Ak

)
= ∑

k
µ0(Ak).

Lemma. The Extension Theorem.
If µ0 is a pre-measure on an algebra A, define an outer measure µ∗ on any subset E of X as:

µ∗(E) = inf

∑
j

µ0(Aj) : E ⊂
⋃

j
Aj where Aj ∈ A for all j

 .

Then µ∗ is an outer measure on X that satisfies:

(i) µ∗(A) = µ0(A) for all A ∈ A.

(ii) Any set in A is Carathéodary measurable with respect to µ∗.

Rmk. The extension is unique. Let M be a σ-algebra containing A, let µ be the measure generated from
µ∗. Assume that µ is σ-finite, then for any other measure ν defined on M such that ν = µ on sets in A,
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ν(E) = µ(E) for any E ∈ M.

Appl. Product Measure.
Let (X1,M1, µ1) and (X2,M2, µ2) be 2 σ-finite measure space. We construct a measure space on X :=
X1 × X2 by having the measure:

µ0(A× B) = µ1(A) · µ2(B).

Here, we have that A as the smallest algebra containing all measurable rectangles. Note that for all
products as the disjoint union of rectangles, we have:

µ0(A× B) = ∑ µ0(Aj × Bj).


