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Hons. Analysis Review

1 Measure Theory

1.1 Preliminaries

Lemma. Partition of Rectangles.

If a rectangle I is the union of finitely many non-overlapping rectangles, i.e., I = LIY° I, then v(I)

ZI{j\I:] o(Ik)-

Lemma. Overlapping Cubes of Rectangles.
If rectangles I1, I, - - - , Iy satisfy I C U]'Z\i1 I, then v(I) < Z;I(\]ﬂ o(I}.).

Thm. Partition of Open set in IR.

Every open set G C R can be written as a countable union of disjoint open intervals.

Thm. Partition of Open set in R".

Every open set G C R" can be written as a countable union of non-overlapping (closed) cubes.

1

Rmk. Dyadic decomposition of R" is composed of the cubes has vertex points at %Z with length 5.

Prop. Cantor set.

The cantor set C has the following properties:
* C#Y;

¢ C has an empty interior, contains no interval, and is totally disconnected;

C has no isolated points, and all its points are limit points of itself, i.e., C is perfect;

¢ C is compact;

m«(C) = 0 (as the union of intervals has length converging to 0).

1.2 Outer Measure

Defn. Outer measure.

Let E C R", we define the outer/exterior measure of E as:
m.(E) :=inf ) _0(Qj),
j=1

where the infimum is taken over all countable covering og E by (closed) cubes, i.e., E C U;i1 Qj.

Prop. Properties of Outer measure.
The outer measure of sets follows the below properties:

(i) Closer Approximation: For every € > 0, there exists a covering E C ﬂ]?”:l Q; with:
Y m.(Qj) < mi(E) +¢;
i=1

(ii) Monotonicity: If E C F, then m,(E) < m.F;
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(iii) Countable Sub-additivity: If E = U7, Ej, then m, (E) < ¥4 m.(E;);
Rmk. If my(F) =0and E C F, my(E) = 0. If m,(Ey) = 0 for all k, then m. (U, Ex) = 0.

(iv) Approximation by Open Sets: Let E C R", for all € > 0, there exists open set G such that E C G and
m«(G) < my(E) +e.

(v) Sum of Separated Sets: If d(Ej,E;) = inf{|x —y| : x € Ej,y € Ey} > 0, then m,(E; UEp) =
ms(Ex) +m.(Ez)-
Rmk. This is not true if we only assume E; N E; = @, contradicted by the Banach-Tarski paradox.

(vi) Countable Sum of Almost Disjoints: If a set E is the countable union of almost disjoint cubes, i.c.,
E C Uzolek, then m*(E) = Z]iozl U(Q])

1.3 Measurable sets and Lebesgue measure

Defn. Lebesgue measurable set.

A set E C R" is said to be Lebesgue measurable if for all € > 0, there exists open set G such that G C E
and m,(G\ E) <e.

If E is measurable, we define its Lebesgue measure to be m(E) = m,(E).

Rmk. Countable Sub-additivity ensures that there exists a open set G such that G D E and m,(G) <
my(E) + €. Then, by Sum of Separated Sets, G = EU (G \ E), then m(G) < m.(E) +m.(G\ E). If
my(E) < oo, my(G) — m«(R) < m,(G\ E).

Prop. Propositions on Measurable Sets.

The following propositions hold for measurable sets:

(i) Every open set is measurable.
Rmk. Every rectangle is measurable.

(ii) Every set with zero outer measure is measurable, which is defined as a null set.
(iii) A countably union of measurable sets is also measurable.

(iv) Every closed set is measurable.
Rmbk. We first prove that compact sets are measurable and any close sets can be written as a countable
union of compact sets, say F = (-, (F N Bx) where By denotes the closed ball of radius k.
Lemma. If F is closed, K is compact, and F, K are disjoint, then d(F, k) > 0.
Lemma. If {Ik}llc\’:1 is a finite collection of non-overlapping rectangles, then m (U}le Ik) = k=1

(v) The complement of any measurable set is measurable.
Rmk. Let E be measurable set, there exists H as a countable union of closed sets such that E¢ = H.

(vi) A countable intersection of measurable sets is measurable.

Cor. If E; and E; are measurable, E; \ E; is measurable, since E; \ E; = Ej N ES.
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Thm. Countable Additivity.

If E1, Ey, - - - are disjoint measurable sets, then m(L° | Ex) = Y22y m(Ey).

Lemma. A set E is measurable if and only if for all € > 0, there exists closed set F C E such that
m«(E\ F) < €.

Cor. Let {I;} be a countable collection of non-overlapping rectangles, then m (U2 Ix) = L5, m(Iy).

Defn. Increasing/Decreasing Subsets of IR".

If Eq, Ep, - - - is a countable collection of subsets of R” that increases to E in the sense that E; C Ejq for
all k, and E = U2, Ey, then E; " E.

Similarly, if E;, E, - - - decreases to E in the sense that E; 1 C E for all k, and E = (N, Ex, then E; \, E.

Cor. Convergence on Increasing/Decreasing Subsets.
Suppose {E;} is a collection of measurable sets in R":
(i) If Ex M E, then m(E) = limy_,, m(Eg);

(i) If Ex \ E and m(Ej) < 4oo for some k, then m(E) = limy_,o, m(E).

Thm. Approximating Sets.
Suppose E is a measurable subset of R”. Then, for every € > 0:

(i) There exists an open set G with E C G and m(O \ E) < €;
(i) There exists a closed set F with F C E and m(E\ F) < ¢;
(iii) If m(E) is finite, there exists a compact set K with K C E and m(E \ K) < €;

(iv) If m(E) is finite, there exists a finite union F = Ullc\lzl Qg of closed cubes such that m(EAF) < e,
where EAF = (E\ F) U (F \ E) is the symmetric difference between E and F.

1.4 o-Algebra and Borel Sets

Defn. o-algebra.
A collection ¥ of subsets of some universal set U is called a c-algebra if it satisfies:

i Uez;
(ii) If E € ¥, then E€ € X, where E° is the complement of E in U;
(iii) If Ex € X for all k, then ;2 Ex € X.
Rmk. The collection of all subsets of IR" is a c-algebra.

Rmk. The collection of all Lebesgue measurable sets in R" is a o-algebra, denoted as M.

Defn. Borel c-algebra.
The smallest c-algebra containing all open sets in R” is called the Borel c-algebra, denoted as B, or BRr.
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Elements contained in B are the Borel sets.

Claim. Intersection being Smallest.
Given a collection Xy of subsets in R”. Consider the family F of all c-algebra that contain X, i.e.,
F ={X:Xisacalgebraand X D Xy}. Let € := Ngc 7 =. Then:

* ¢is a g-algebra;
® £¢D Xy
* ¢is the smallest o-algebra containing ¥, i.e., if € is a nother ¢-algebra containing X, then ¢’ D .

Rmk. B C M C P(R"), i.e., all Borel sets are measurable.

Defn. G; and F; Sets: G, and F; set are the Borel sets, and they are defined as:
(i) The countable intersections of open sets is G sets;

(i) The countable union of closed sets is F, sets.

Thm. Measurable subsets in R".

A subset E C R" is measurable if and only if:
(i) E differs from a Gs set of measure zero, i.e., E = H/Z where H is a Gs set and m(Z) = 0.
(ii) E differs from a F; set of measure zero, i.e., E = HU Z where H is a F;, set and m(Z) = 0.

Rmk. M is a completion of B, i.e., M is B adding all null sets.

1.5 Invariance of Lebesgue Measure and Non-Measurable Sets

Prop. Translation-Invariance of Lebesgue Measure.
If E € Mgn and for any h € R”, then E + h := {x + h|x € E} is measurable and m(E + h) = m(E).

Prop. Relative Dilation-Invariance of Lebesgue Measure.

If E € Mg and for any 6 = (61,02, -+ ,0,), then 0E := {(d1x1,02x2, - -+, nXp)|(x1,x2,- -+ ,xy) € E} is
measurable and m(6E) =6, - 6, - - - ,m(E).

Rmk. Lebesgue measure is reflection-invariant, that is when E € Mg, then —E := {—x|x € E} is mea-
surable and m(—E) = m(E).

Defn. Equivalence Relationship on [0, 1].
An equivalence relation for any x,y € [0,1] is defined as follows:
x~yifx—yeqQ.
The equivalence classes are [x] := {x + g € [0,1] : 4 € Q}. The equivalence classes either are disjoint or
coincide, and they form a partition of [0,1] = | |yc 4 Xa-

Axiom. The Axiom of Choice.
Consider a family of non-empty, pairwise disjoint sets {Ey },c4 in a common set X, there exists a subset



Hons. Analysis Review 5

of X which contains exactly one element from each E, for & € A.
In other words, there exists a function &« — x, (known as a “choice” function) such that x, € E, for all «.

Defn. Vitali Set.

Let V be a set consisting of exactly one element from each disjoint equivalent class [x,] of [0, 1].

Thm. The Vitali Set is not measurable.
Rmk. This is by the translated set vy = v+ g = {x 4 gx : x € V} where {g;} is an enumeration of rationals
in [-1,1] N Q. The inclusion [0,1] C |2 ; vx C [—1,2], thus 1 < oo x m(v) < 3, which is a contradiction.

1.6 Measurable Functions

Defn. Measurability of a Function.

Consider real-valued function f defined on a measurable set E C R" such that f : E - RU {£co}. fis
measurable if for any 2 € R, {x € E: f(x) < a} (denoted as {f < a}) is measurable.

Rmk. f is finite-valued if —oo < f(x) < 4o0 for all x € E.

Cor. Equivalent Definitions of Measurable Function.
f is measurable if and only if {f < a}, or {f > a}, or {f > a} is measurable for all 4 € R.
If f is finite valued, then f is measurable if and only if {a < f < b} is measurable for all 4,b € R.

Defn. Almost Everywhere.
A property if said to hold almost everywhere in E if it holds in E except for a subset of E with measure zero.

Prop. Propositions on Measurable Functions.

The following properties on measurable functions holds:

(i) A finite-valued function f is measurable if and only if f~!(G) is measurable for every open set
G CR.

(ii) If f is continuous on R”, then f is measurable.
Rmk. If f is measurable and finite-valued, and & is continuous on R, then ¢ o f is measurable.

(iii) Suppose {fi}i_; is a sequence of measurable function on E. Then:
sup fn(x), inf fu(x), limsup f,(x), and liminf f,, (x)
n n n—00 n—oo
are measurable.

Rmk. Note that we can have {sup,, f, > a} = U,{fn > a}, and inf, f,(x) = —sup,,(—fu(x)).
Rmk. The upper and lower limits can be written as limsup, .., fu(x) = infy{sup,-; fu} and

liminf, e fu(x) = sup,{inf, > fu}-
@v) If {fr}3> is a collection of measurable function, and f(x) = limj_, fr(x), then f is measurable.
(v) If f and g are measurable, then:

e The integer powers of f* for k > 1 are measurable;
Rmk. For odd powers, {f* > a} = {f > a'/k} and for even power, {f* > a} = {f >
a/Fy U {—f < al/ky.
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* f+gand f- g is measurable if both f and g are finite-valued.
Rmk. In this case, we note that {f +¢ > a} = {f > a—g} = Uyeo{f > g9 > a—g} and

fe=11(f+8)?—(f—g?.

(vi) Suppose f is measurable, and f(x) = g(x) for a.e. x. Then g is measurable.

1.7 Approximation Measurable Functions by Simple Functions

Defn. Characteristic Functions.

The characteristic function (or indicator function) of a set E is defined as:

1, if x €E,
Xe(x) = .
0, ifx¢E.

Defn. Step Functions.

A step function is a finite function of the form:

N
flx) = Z ﬂkXRk(x),
k=1

where a1,a;,- -+ ,ay € R and Ry, Ry, - - -, Ry are rectangles.

Defn. Simple Functions.
A simple function is a finite function of the form:

N
f(x) =Y axe, (x),
pa

where a1,a,,--- ,ay € Rand E;q, Ey, - - - , Ey are measurable sets of finite measure.
Rmk. We can assume without the loss of generality that E;’s are disjoint and a;’s are distinct.

Thm. Approximating Non-Negative Measurable Functions by Simple Functions.
Suppose f is a non-negative measurable function. There exists an increasing sequence of non-negative

simple functions {¢(x)}> ; that converges to f, i.e.:
pr(x) < gra(x) and Jim gy(x) = f(x) for all x.
—00

Rmk. Here, we define ¢i(x) as:

k, if f(x) > kand |x| <k,
i—1 . i—1 .

or(x) = ]7, 1ff(x)€{]2k,2]](],]6{1,2,---,k-2k},
0, if [x| > k.

Thm. Approximating Measurable Functions by Simple Functions.
Suppose f is a measurable function. There exists a sequence of simple function {fi}?* ; that satisfies:

|k ()] < |@rs1(x)] and lim @y (x) = f(x) for all x.
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Rmk. In particular, we have |¢i(x)| < |f(x)| for all x and k.
Rmk. The proof is made possible with the construction that:

ft:=max{f,0},
f~ = —min{f,0},

so that f* are non-negative measurable functions, where they are respectively approximated by {q)l({l) (x) }oo

k=1

and {(p,({z)(x) }:;1, respectively. Therefore, we have ¢y (x) = (p,(f) - (p,({z).

Thm. Approximating Measurable Functions by Step Functions.

Suppose f is measurable on R", then there exists a sequence of step functions {y;}¢’, that converges
pointwise to f(x) for almost every x.

Rmk. This case can be thought of as an extended case for approximating by simple functions. For every
€ > 0, we can always find Q1,Qy,- - -, Qn such that m(EA U]'Ii1 Qj) < € for all E. By considering the grid
formed by extending the sides of these cubes, we see that there exist almost disjoint rectangles, and there
are smaller rectangles R; contained in those rectangles forming a collection of disjoint rectangles such that

m (EA |_|],]\£1 R]-) < 2e¢. Thus, we have:
M
P = Y ().
j=1

Rmk. For each approximation, it is converging except possibly a set of measure < 2e. However, all
the variations set Ex := {x : f(x) # (c)} in which m(Ex) < 2e and by having Fx = U2k Ej and
F = N%_q Fx, we have m(F) = 0 and ¢ (x) — f(x) for all x in the complement of F.

1.8 Littlewood’s 3 Principles of Real Analysis

Intuition. Littlewood’s 3 Principles of Real Analysis: Littlewood summarized the connections in the form
of three principles that provide a useful intuitive guide in the initial study of the theory:

(i) Every measurable set is nearly a finite union of cubes;
(ii) Every measurable function is nearly continuous;
(iii) Every almost everywhere convergent sequence of functions is nearly uniformly converged.
Rmk. “Nearly” means that the set of exceptions has small measure.
Thm. Measurable Set Nearly as a Finite Union of Cubes:

(Approximating Sets (iv):) If m(E) is finite, there exists a finite union F = U}I{\I:l Qi of closed cubes such
that m(EAF) < €, where EAF = (E\ F) U (F \ E) is the symmetric difference between E and F.

Thm. Egorov’s Theorem.
Suppose { fi } i, is a sequence of measurable function that converges almost everywhere to a finite-valued
function f on a measurable set E of finite measure. Then, for all # > 0, there exists a closed set F C E such
that:

m(E\ F) <nand fy =2 f on F.
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Lemma. Under the same assumption, for all € > 0 and # > 0, there exists closed set F C E and N € IN
such that:
m(E\ F) <nand |f(x) — fy(x)| < eforall x € Fand k > N.

Rmk. For E = R! and fi(x) = X[k (x) converges pointwise to f(x) = 1 since the measure is not finite.

Thm. Lusin’s Theorem.

Suppose f is measurable and finite-valued measurable function on a measurable set E. Then for all € > 0,
there exists closed set F C E such that m(E \ F) < € and f|f is continuous.

Lemma. A simple measurable function f on a measurable set E satisfies the condition that for all € > 0,
there exists closed set F C E such that m(E \ F) < € and f|f is continuous.

2 Integration Theory

2.1 Lebesgue Integral for Simple Functions

Defn. Canonical Form of Simple Function.

The canonical form of a simple function is:

N
¢ =Y axg, (x),
P

where a;’s are distinct and non-zero and Ej’s are disjoint and measurable sets with finite measure.

Defn. Lebesgue Integral on Simple Functions.
The Lebesgue Integral for ¢ = YN, akXE, (x) is:

N
/q)(x)dx =Y ajm(E)).
=1
Rmk. The integration of ¢ is the same for any representation.

Prop. Properties on Lebesgue Integral for Simple Function.
The following properties holds for Lebesgue integration for simple function:

(i) Linearity: [(ap+bo)=a [ ¢+ [ ¢;

(ii) Additivity: Let E be a measurable set with finite measure, then we have [ ¢ = [ ¢ xg;
Rmk. If E and F are disjoint subsets of R" with finite measure, then [ ¢ = [ ¢ + [; ¢.

(iii) Monotonicity: Let ¢ < ¢, them [ ¢ < [;
Rmk. In particular, if ¢ = ¢ almost everywhere, then [ ¢ = [ 1.

(iv) Triangular Inequality: If ¢ is a simple function, so is |¢|, and | [ ¢| < [ |g].
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2.2 Lebesgue Integral for Bounded Function Supported on a Set of Finite Measure

Defn. Support of Function.
The support of a function f is defined as:

supp(f) = {f # 0}.

f is supported on a set E if f = 0 outside of E, i.e., supp(f) C E.

In this stage, we are interested in f being bounded, measurable such that m(supp(f)) < +oo.

For such functions, there exists a sequence of simple functions {¢, }?> ; with each ¢, bounded and sup-
ported on a finite measurable set, and ¢, (x) — f for all x.

Thm. Convergence of Simple Approximation Function.

[ee]

Let f be a bounded function supported on a set E of finite measure. If {¢,}5 ;

is any sequence of simple
functions bounded by M, supported on E, and with ¢,(x) — f(x) or a.e. x, then:

(i) The limit limy,—c @, (x)dx exists;
Rmk. Here, we have that —Mxg < ¢ < Mxg.
Rmk. The proof wants to show that { [ ¢}, is a Cauchy sequence.

(ii) If f = 0 a.e., then the limit lim, e | @, = 0.

Defn. Lebesgue Integral on Bounded Function Supported on a Set of Finite Measure.
For a bounded function f supported on a set of finite measure, the integral is:

[z = lim [ g (x)a,

where {@,(x)}5; is any sequence of simple functions satisfying that:
* lon| < M;
e Each ¢, is supported on a support of f;
* ¢u(x) = f(x) for a.e. x as n tends to +oo.

Rmk. We need to show that the definition is independent with the choice of sequence. Suppose {¢,}" ,
and {¢,};°, are two qualified sequences, then we have {1, }>_; with 77, = @, — ¥, in which {5, }7_, is
consisted of simple functions bounded by 2M, supported on a set of finite measure, and #, — 0 a.e. as n

tends to +oo. Hence, the two limits lim, e [ ¢ = limy—co [ P

Prop. Properties on Lebesgue Integral for Bounded Function Supported on a Set of Finite Measure.
The properties remains the same as for bounded function supported in a set of finite measure:

(i) Linearity: [(af +bg)=a [f+b[g
(ii) Additivity: If E and F are disjoint subsets of R" with finite measure, then [, f = [ f+ [¢ f;

(iii) Monotonicity: Let f < g, them [ f < [g;
Rmk. In particular, if f = ¢ almost everywhere, then [ f = [g;

(iv) Triangular Inequality: |f| is also bounded, and | [ f| < [ |f].
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Thm. Bounded Convergence Theorem.

Suppose that {f;};> ; is a sequence of measurable functions bounded by M and supported on a set E of
finite measure, in which fy — f a.e. as k — oo. Then, f is measurable, bounded, and supported on E for
a.e. Moreover:

/|fn—f|—>Oasn—>oo,

/fn—>/fasn—>oo.

Rmk. In constructing this theorem, by Egorov’s Theorem, there exists closed sets F;; C E such that f, = f
on Fy, and by m(E \ F;) implies that [ |f, — f| = qu |fn— fl+ fE\Fn < em(E) + 2M.

hence implying that:

Thm. Riemann and Lebesgue Integral.
Suppose f(x) is Riemann integrable on [a, b]. Then f is Lebesgue measurable, and:

R L
- f(x)dx = /[a,b] f(x)dx.

Rmk. The Riemann integral is based on bounded functions, and it uses a partition by I' which forms two
sequences of step function, which is:

{etizr and {9 hily,
in which each element is absolutely bounded by M and:
P1(x) < @a(x) <o < fx) <o < ha(x) < Pr(x).

By definition of Riemann integral, we have that:

R R R
lim ¢r(x)dx = lim Pr(x)dx = ]f(x)dx.

k=00 J{4,b] k=00 /[a,b] [a,b

By the definition of the step functions, the integrals on ¢i(x) and ¥i(x) are equal for Riemann and
Lebesgue integration. Let ¢ and ¢ be their respective limits, then ¢ < f < ¢. As they are both measurable,
then the bounded convergence theorem, the integrals converges at the limit, which gives:

L

[ @@ - i) dx=o,

[a,b]
which then implies ¢ = ¢ a.e., thus f is measurable. Then by ¢, — f a.e., we have the two integrations
generating the same result.

2.3 Lebesgue Integral for Non-negative Measurable Function

Defn. Lebesgue Integral for Non-negative Measurable Function.
Let f > 0 be a measurable function, we defined:

[ fls = sup [ stas,

where the supremum is tajkn over all measurable functions g such that 0 < ¢ < f and g is bounded and
supported on a set of finite measure.
Def. f is Lebesgue measurable if [ f(x)dx < +o0.
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Prop. Properties on Lebesgue Integral for Non-negative Measurable Function.

The following properties holds:
(i) Linearity: Fora,b >0, [(af +bg) =a [f+b [ g
(ii) Additivity: If E and F are disjoint subsets of R" with finite measure, then [ f = [z f + [; f-

(iif) Monotonicity: Let 0 < f < g, them [ f < [g;
Rmk. Note that [ ¢ can be +co as we are not assuming that g is integrable;

(iv) If g is integrable, and 0 < f < g, then f is integrable;
(v) If f is integrable, then f < +o0 a.e.;

(vi) If [ f =0, then f =0a.e.

Lemma. Fatou’s Lemma.
Suppose that {f;};> ; is a sequence of non-negative measurable functions such that f; — f a.e. Then:

/fSliﬂiorc}f/fk.

Rmk. By construction, [ f = Supy, pounded and supported J & if we let g := min{g, i} < g, thus it is
bounded and supported by supp(g). By the bounded convergence theorem, we have [ ¢ = lim, e [ g <

[ fx and since [ g < [ fx, we have that:

/f=,}g§o/gk§hgg1f/fk-

Cor. Monotone Convergence Theorem.

Suppose f is a non-negative measurable function, and {f;}{* ; is a sequence of non-negative measurable
function with f,(x) < f(x) and fi(x) — f(x) for a.e. x. Then limy .o, [ fx = [ f.

Cor. Suppose {fi};2, is a sequence of non-negative measurable functions such that f;  f, then

limk*}oo ffk = ff
Rmk. By Fatou’s Lemma, | f < liminfy_, [ fyand fy < fimplies that [ fy < [ f and hence limsup;_, ., [ fx <

Jf

Cor. Monotone Convergence Theorem for Series.
Consider the series } ;7 ; ax(x), where ai(x) > 0 is measurable for every k > 1. Then:

/ (liak(x)> dx = koé </ak(x)dx> |

Rmk. If Y32 1 ([ ax(x)dx) is finite, then } 3> ; ax(x)dx converges for a.e. x.
Rmk. This is f;(x) = Z{(Zl ax(x) /* Yreq ax(x) through monotone convergence theorem.

24 Lebesgue Integral for Measurable Function

Defn. Lebesgue Integral for Measurable Function:
Let f be measurable function. f is integrable if |f| is integrable (as |f| = f™ + f 7).
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Hence, the Lebesgue Integral of f is defined to be:

[r=[r-]r

Prop. Properties of Lebesgue Integrable functions.
The properties remains the same as for general integrable functions:

(i) Linearity: [(af +bg) =a[f+b[g
(ii) Additivity: If E and F are disjoint subsets of R” with finite measure, then f ef = fE f+ f IS
(iii) Monotonicity: Let f < g, them [ f < [g;

(iv) Triangular Inequality: |f| is also bounded, and | [ f| < [ |f].

Prop. Integral Converging to Zero for Some Set.
Suppose f is integrable on R". Then for every € > 0:

(i) There exists a ball B such that [ |f| <€;
Rmk. The integrable functions does not necessarily vanishes near oo, that is if f is integrable, then
lim|y| o0 f(x) = 0 is false.
Rmk. We may consider By as ball centered at origin with radius k, in which f; := f-xp, ~ f.
Hence by monotone convergence theorem, we have limy_,, [ fy = [ f < coand thus | [ f — [ fi| =
‘fB;f‘ < efork > N.

(ii) There exists § > 0 such that [, |f| < e for any measurable set E such that m(E) < 4.

Thm. Dominance Convergence Theorem.

Suppose {fi};, is a sequence of measurable function such that fy — f a.e. Assume that |f;| < g a.e.
where g is integrable. Then limy_ .o, [ fx = [ f.

Rmk. In fact, [ |fx — f| — 0 as k — —+oo.

Rmk. Let —g < fy < g, then we can have [(f+g) < liminfy , [(fx + g) by Fatou’s Lemma. Then,
likewise, we have — [ f < liminfy_,o(— [ fx) = —limsup,_,, [ fx-

Defn. Complex-valued Functions: A complex-valued function can be written as:
f(x) = u(x)+iv(x), where u(x) = Ref(x) and Jmf(x).
Rmk. Hence, f is integrable if |f| := +/|u|? + |v|? is integrable, that is if and only if u and v are integrable.

Defn. Lebesgue Integral over Complex-valued Functions.
The Lebesgue integral of complex valued is defined to be:

/f(x)dx = /u(x)dx+i/v(x)dx.

Rmk. Addition and scalar multiplication is closed for complex-valued f measurable function on E.
Rmk. The collection of all complex-valued integrable functions on a measurable subset E C IR" forms a

vector space over C.
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2.5 The Space of Integrable Functions

Def. Norm in Space of Integrable Functions L!(E).
For any f € L!(IR"), we define the norm of f to be:

Il = [ f@ld

where the norm induces the following properties:
(i) Linearity: ||[Af][;1 = |A|-||f]|1 forall A € C;
(ii) Triangle Inequality: |[f +gllpr < [Ifllor + llgllzes
(iii) || f||;1 = 0 implies that f = 0 a.e. on R";

(iv) d(f,g) := |If — gll;1 induces L' (R") into a metric space.

Thm. L'(R") is Complete.

L'(R") is complete with the metric d(f,g) = ||f — gll;1-

Cor. If f is convergent to f € L!, then there is a subsequence { fk,}kjez+ of {fu}, so that fkj — f
pointwise a.e. x.

Rmk. This is not necessarily true if we want the entire sequence to converge to f.

Defn. Dense Families of Function.
A family of integrable function G is dense in L!(R") if for all f € L!(IR") and for all € > 0, there exists
g € Gsuch that ||f — f||;1 <e.

Lemma. Dense Families in L!(IR").
The following families are dense in L! (IR"):

(i) Simple functions;
(ii) Step functions;

(iii) Continuous functions with compact support, denoted Cc(IR").

Strategy. Strategy in Proving Properties for L' (R").
If we want to prove some properties for all integrable functions, we:

(i) prove the property holds for a dense family;
(ii) Use a limiting argument to conclude for all L!(R").

Appl. Invariance of Lebesgue Integral.
The following invariance holds for Lebesgue integration with f € L! (R"), h € R",and 6 > 0:

L L
f(x—h)dx = / f(x)dx;
IRVI RVI
c c
ot [ f(ox)dx = /112" f(x)dx;

IRTI

/ﬂ:f(—x)dx = /]Rff(x)dx.
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Rmk. The proof was made first on simple functions. Then, for the complex-valued functions, the conclu-
sions can be made from f;, = xg,, which holds for all L' (R").
Cor. By such, we can conclude the commutativity for convolution of f and g by:

Frgt) = [ FOgtx—ydy= [ Flx—ygy =g+ F2).

Appl. Translation and Continuity.

For any f € L'(R"), then | f, — f|| — 0 as h — 0, where f;, = f(x +h).

Rmk. The proof follows along the continuous function with compact support, say § € Cc(R") in which
|g(x —h) — g(x)| < e forall x € R" if |h| < J, in which the argument follows quickly through:

1= Flor = [ 1= £
:/|fh—gh+gh—g+g—f|S/Ifh—gh|+/|gh—g\+/|g—f|

€
=2[|f — gl +llgn — gl <3 x 3 <€
as |h| < 0.

2.6 Fubini’s Theorem
Defn. Slices and Mapped Functions.
Let x € R", y € R", and function f(x,y) be defined on E := R™ x R", the slices are defined as:
E,:={yeR":(x,y) € E},
EY:={xeR": (xy) € E}.
At the same time, we concern the following functions:
fx(y) = f(x,y),
f(x) = fxy).
Thm. Fubini’s Theorem.
Let f € L'(R™*™), then:

(i) for a.e. x € R™, the slice f, is measurable and integrable in R"”,

(ii) the function x — [r. f(x,y)dy is defined for a.e. x € R", measurable and integrable on R", and

(iii) / Rnl+71f(x,y)dxdy = /IR . < /IR nf(x,y)dy) dx = /TR ) ( o f(x,y)dx> dy.

Rmk. The proving strategy is to let the family of functions satisfying Fubini’s Theorem as F, and prove by
following steps:

(i) prove that F is closed under linear combination, so we reduce the proof to non-negative functions,

(ii) prove that F contains the limit of monotonic sequences, then we reduce the proof to simple, thus

characteristic functions,

(iii) prove that for E being a Gs-set in R”™" with finite measure, then xr € F,
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(iv) prove that for N being a null set in R"*", then x € F, and the slices Ny are also null set in R", by
such, we know that this applies for all finite measurable set,

(v) for any f € LY(R™*"), then f € F.
Rmk. The converse is not necessarily true. If f is measurable in R"*", and T := [pu (Jgn f (X, y)dy) dx is
finite, f is not necessarily integrable.
Thm. Tonelli’s Theorem.
Let f(x,y) be non-negative measurable function in R”*", then:

(i) for a.e. x € IR", the slice fy is measurable in R",

(i) the function x — [, fxdy (taking values in R™ U {+o0}) is measurable, and

(iii) /]Rmﬂ f(x,y)dxdy = - (/IR” f(x,y)dy) dx = /n ( Rmf(x,y)dx) dy. (This could be infinite).

Rmk. Fubini-Tonelli Theorem.
We use the two theorems in the following cases:

(i) Use Tonelli’s theorem on |f| to show that f € L!(R"*"), and then
(ii) use Fubini for [[pmn f(x,y)dxdy.

Rmik. In proving Tonelli’s Theorem, we construct that:

0, if |(x,y)| >k,

() =
ey {min{ﬂx,y),k}, i ()] < k.

Lemma. Exterior Measure on Product of Sets.
Let E; C R™ and E, C R”, then:
M (El X EZ) < m*(El)m*(E2)/

so if one set has exterior measure zero, then the exterior measure of product must be zero.

Prop. Measure of Product of (Measurable) Sets.
Let E; C R™ and E; C R" be measurable, then E := E; x Ej is measurable in R"*", and:

m(E) = m(El)m(Ez),

so if one set has measure zero, then the measure of product must be zero.

Cor. Suppose f is a non-negative function on R”, and let:
A:={(x,y) e R"xR:0<y < f(x)}.
Then:

(i) fis measurable on R if and only if A is measurable on R"+1,

(i) if the conditions in (i) holds, then [, f(x)dx = mpRu1(A).
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3 Differentiation

3.1 Differentiation of the Integral

Defn. Average of Integration.
Let f € LI(R"), consider the set function M(R") 3 E + [, f, and we let:

15 = e )

Thm. Lebesgue Differentiation Theorem.
Let f € L'(IR"), then:
1
Iim ——— / = f(x),
dm Q) Qf f(x)
for a.e. x € R".

Rmk. Q works for cubes and balls, but only certain classes of rectangles works.

3.2 Hardy-Littlewood Maximal Function

Def. Hardy-Littlewood Maximal Function.
Let h € L'(IR"), we define its Hardy-Littlewood maximal function of & as:

) L
Mh(x) = h* (x) = Qaﬁm(@/gg'h"

Rmk. The Hardy-Littlewood maximal function of f € L(IR") follows:
* 0 < ff(x) < oo,
e Forany A > 0, {f* > A} is open in R" implies that f* is measurable,
* f* might not be in L!(IR").

Thm. Hardy Littlewood Theorem.
If f € L'(IR"), then f* belongs to weak L!(IR"), namely, there exists a constant C (independent of f and
«) such that Va > 0:

e

Lemma. Elementary Version of Vitali Lemma.
Suppose F = {Q1,---,Qn} is a finite collection of (open or closed) cubes in R”. Then 3 a disjoint
sub-collection Q;,, Q;,, - -+, Q;, of F such that:

N 14
m (U Qi) <3"y m(Q;),
i-1

j=1

() (o)

ie.:
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Defn. Locally Integrable.
f is locally integrable (f € L _(R")) if f € L'(B) for any ball B in R". Lebesgue Differentiation Theorem

loc

holds if we assume f € Ll (R").

loc

Rmk. For any measurable set E C R", xg € L] (IR"), but not necessarily in £ (R").
Defn. Lebesgue Density Point.
Let E be a measurable set and x € RY, x is a point of Lebesgue density of E if:
lim m(BNE)
m(B)—0,xeB  M(B)
Rmk. A.e. x € E is a Lebesgue density point of E and a.e. x ¢ E is not a Lebesgue density point of E.

=1.

Defn. Lebesgue Point.

A point x is referred as a Lebesgue point of f if:

lim fQ () — f(x)ldy =0,

Q—x
and this holds for a.e. x € R".

Cor. Almost Every Point is Lebesgue.
If f € Lj.(R"), then a.e. x € R" is Lebesgue point.

3.3 Approximation to Identity

Defn. The Scaling Function.
Let k be a bounded integrable function such that [k = 1 in R”. Then the scaling function is:

1, /x
The scaling is due to the fact that:

/n ks(x)dx = /IR %k (g) dx = / k(x)dx = 1.

Rmk. By the same token, we have [ |ks| = [gn |K|-
Rmk. If k has compact support, say Bg,, then k; is supported on Bsg,,.

Defn. Good Kernels.
A good kernel K;(x) is integrable and satisfies the following for all § > 0:

(i) fraKs(x)dx =1,
(ii) Jga |Ks(x)|dx < A, and

(iii) for every 7 >0, f\X\ZW |Ks(x)|dx — 0asé — 0,

where A is a constant depending on ¢.
Prop. Properties with f * k;.
For any integrable function f in R", consider the convolution (f * ks)(x), which is integrable that:
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Let k be a bounded integrable function in R”, such that [k = 1, and suppose k has compact support,
then:
(f xks)(x) = f(x)asd =0,

for any x that is a Lebesgue point of f.
* Let k be a bounded integrable function in R” such that [k = 1. Then f xk; — f in L' as 6 — 0.

* Let k be a bounded integrable function in R” such that [k = 1. Suppose k(x) = O (|x|++)\> for some
A >0 (e, |k(x)] < W for |x| large enough). Then f x ks(x) — f(x) for x which is a Lebesgue
point of f.

e If k € C"(IR"), then f * k is continuous and bounded.

Rmik. By (ii), the convergence in L! implies that there exists 5y — 0T such that f * k(;],(x) — f(x) for a.e. x.

Rmk. For (iii), we have that:

1

1 n 1 1
X1 ¢ L (R"), Ta[rreXlxl>1} € L' (R").

Rmk. For (iv), we have that:
Oy, (f xk(x)) = f * (9x,K(x)).
Ex. Kernels for PDEs:

e The Poisson kernel is:

Py(x) = 1K <x> 1 v

T2+ Y2
for the upper half plane Laplace equation.

e The heat kernel is:

. 1 _ 2/ 4t
Ht(x)_Wg x|/ ( ),

solving the global Cauchy for Heat equation.

Lemma. Average Function.
Suppose that f is integrable on R?, and that x is a Lebesgue point of f. Let:

a(r) = l/ |f(x —y) — f(x)|dy, whenever r > 0.
lyl<r

rt’l

Then a(r) is continuous function of r > 0, and a(r) — 0 as  — 0 and «(r) is bounded for all > 0.

4 Hilbert Space

41 [*(R") Space

Defn. L? Space.

L?(IR") is the collection of complex-valued measurable functions in R” such that [, |f(x)|?dx < +oo.
The L?-norm of f is defined as || f||;2 := (/ |f(x)|2dx)1/2.

Rmk. The following holds:

(i) For A € C, [|Afl[2 = [A[- £l 2.
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(ii) For f,¢ € L2(R"), and if f = g a.e., then | f — g2 = O (identified as the same element).
(iii) f € L?(E) if f - xg € L2(R").
(iv) For 1< p < +oo, |[fllir = (f If(x)|Pdx)""”

Defn. Inner Product in L2.
On L?(R"), we define the inner product as:

(f.8) = [ ).
Rmk. We check that fg is integrable as [ |fg| = [[f|-|g| < [3(If1*+[g]?) < +oo. (if a,b > 0, then
ab < 1(a% +b%)).
Rmk. Cauchy-Schwartz Inequality indicates |(f, ¢)| < [|fll;2 - lgll;2-

Prop. Properties on the L? Space.
(i) Inner product (e, ®) satisfies Cauchy-Schwartz.
(ii) For any ¢ € L2(R") fixed, f € L2(R") + (f,g) € C is linear in f and (g, f) = (f, ).
(iii) L?(R") is a vector space over C and || e ||;2 is a norm. (Distance is d(f,g) = ||f — gl|.)

Thm. L? Space is Complete.
The space of L?(IR") is complete with respect to the metric from the norm, i.., all Cauchy sequences
converges.

Rmk. The proof involves the construction of:

K K
Sk(f)(x) = fu, (%) + k_Zl(fnkH (%) = fu (%)), and Sk (8)(x) = |fu, (x)| + k—Zl | fitgar (X) = fi (X)),

where f,,, is subsequence in which the L? norm of there differences are within 27, Then, [Sk(g)| with
MCT implies that f € L? and the construction of Sk(f) supports that f,, converges to f by DCT. Eventu-
ally, by triangle inequality:

1 = I < 1 fo = foe |+ WL foe = fI] <.

Thm. L? Space is Separable.

The space L?(IR") is separable, in the sense that there exists a countable collection {f;} of elements in
L?(R?) such that their linear combinations are dense in L?(R%).

Rmk. Here, we constructed the collection C of characteristic functions xp, where D is a dyadic cube in R”,
with coefficients being complex numbers whose real and imaginary parts are rational, i.e., D := {zj—k, 1;71}

for integers j and k.

4.2 Hilbert Space

Defn. Hilbert Space.
A set H is a Hilbert space over C if:
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(H1) H is a vector space over C.
(H2) H is equipped with an inner product (e, ) such that:

* For any g € H fixed, f — (f,g) is linear on H.

* (f.8) =& f)
* (f,f) > 0forall f € H with equality if and only if f = 0in H.
(P) Properties: ||f|| = (f, f )1/ % and Cauchy-Schwartz with Triangle Inequality holds.

(H3) H is complete with respect to the metric d(f,g) = ||f — g||. (not required for Pre-Hilbert Space, but
Pre-Hilbert Space can be extended to Hilbert Space, called the completion of the Pre-Hilbert Space
by having objects as all Cauchy sequences).

(H4) H is separable, i.e., H has a dense subset which is countable.

Rmk. Banach space is a normed vector space with (H3).

Ex. Examples of Hilbert Space.

(i) (L*(R"), (e, ®)) is a Hilbert space over C.

(ii) CN := {(z1,--- ,2n) 1 zi € C} with forz,w € CN that (z,w) = Zil\il z;w; (or the standard Euclidean
inner product) is a Hilbert space.

(i) *(Z) = {(--- ,a_1,a0,a1, ) : a; € C, L% |an|*> < oo} with inner product being the infinite sum
of the product axby is a Hilbert Space (also classified as (i)).

(iv) WY2(R") = {f € L2(R") : |Vf| € L2(R™")} with (f,g) = (f,g);2 + Y1, (3;f,9:g) is a Hilbert space
(also classified as (i)).

Rmk. All the Hilbert space can be classified as (i) or (ii).

4.3 Orthogonality and Basis

Defn. Orthogonality.
f,g € H are orthogonal, i.e.f L gif (f,g) =0.
Rmk. Pythagorean theorem: If f | g, then || f + ¢[|? = || fI|* + l|g]|*.

Defn. Orthonormal Collection.
1, ifa=p,

0, ifa#p.

Rmk. Since ‘H has a countable dense subset, any orthonormal collection in H has at most countably many

A collection {ey }ye4 in H is orthonormal if (e, eg) =

element (since the separation has to be |lex — egl| = [lea||* + || — egl|> = 2).

Prop. Projection onto Orthonormal Collection.
If {e;} is orthonormal in H, and f = YN | axe, € H, then f]|2 = XN, [(f, ex)]*.
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Defn. Orthonormal Basis.
An orthonormal collection {e;} of H is an orthonormal basis if the finite linear combination of ¢;’s over C

are dense in H.

Thm. Equivalent Conditions for Orthonormal Collection.

Let {e;} be an orthonormal collection in H, the following are equivalent:
(i) Finite linear combinations of {¢;} are dense in .
(ii) If f € H and (f,ej) =0 forall j € N, then f = 0.

(iti) If f € H and Sn(f) = L&, axex € H with a; := (f,e;), then Sy(f) — f in the norm as N — +co.
(Namely, YN | (f,er) ex — f.)

(iv) (Parseval’s Identity) If f € H, then || || = Yeen | (£, ex) %
Rmk. All above vases implies that the basis is orthonormal.
Thm. Orthonormal Basis of Hilbert Space.

Every Hilbert space has an orthonormal basis.

Rmk. The construction is by Gram-Schmidt process.

4.4 Unitary Mapping
Defn. Unitary Isomorphisms.
Given 2 Hilbert spaces H and #', with ((e, ), , (e, ),,), amapping T : H — H' is a unitary isomorphism
if:
(i) T is alinear map, i.e., T(af +Bg) = aT(f) + BT(g) foralla,p € Cand f,g € H.
(ii) T is a bijection.
(i) [Tl = [1fll3 for all f € H.

Rmk. (iii) guarantees that inner product is preserved, i.e.:

() = |1 +8IP~ 115 — gl +i (Hfm Y L

)

Any two infinite dimensional Hilbert spaces are unitarily equivalent, i.e., there exists a unitary isomor-

Cor. Unitary Isomorphisms for Infinite Dimensional Hilbert Spaces.

phism between them.
Rmk. The construction is by enumerating an orthonormal basis {ej, ey, - - } and {e}, €}, - - -} for H; and
H, respectively, and have T : Hy — Hp, ¢; — el.
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4.5 Fourier Series

Appl. Conventions to L?([—7, 7t]) Space.
We consider L?([—, 7r]) with inner product (f,g) = 2 [”_f(x)g(x)dx.

Prop. Orthonormal Basis in L2([—7, 7t]).

{e~*x1, .7 is an orthonormal basis for L*([—, 7]).

Rmk. By Euler’s Formula, we can construct another orthonormal basis of {cos kx, sinkx } .

Rmk. If f is piecewise continuous (or Riemann integrable) on [—7t, 7t], then f € L?([—, t]), which extend
f to be defined on R with periodicity of 27.

Thm. Approaching from Fourier Series.
We write the Fourier series of f(x) (integrable on [—7t, 71]) as:

f)~ Y ane™,

n=—oo
then:
(i) Ifay =0 forallk € Z, then f(x) =0 a.e. x.
(i) 2 aerle®™ - f(x) forae xasr—1".
Rmk. (ii) is a consequence of the Poisson kernel.
Thm. Convergence of Fourier Series.
Suppose f € L?([-, 7t]), then:
(i) (Parseval’s Relation) Y5 |a,|> = % S f(x)[Pdx.
(ii) The mapping f — {ay} is a unitary correspondence between L?([—7t, 7t]) and ¢?(Z).
(iii) The Fourier series of f converges to f in the L?-norm, that is:
1 7T
— |f(x) — Sn(f)(x)[*dx — 0as N — oo,
2w )
where Sy (f) = Y0y ane™™.
Rmk. If f € L*([—7, 7r]) and f(x) = L2 axe™, then f'(x) = Y52 kage'™, thence:
1 7T 00
om | 1 @)Pdx =) [kl
7T

2w ) P

Therefore, f'(x) € L?>([—7, 7t)) is a better decay for |a| as k — F-co.

5 Abstract Measure Space

5.1 Abstract Measure

Defn. Measure Space.

A measure space on a set X is a triple (X, M, i) where:
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(i) M is a c-algebra, which is a non-empty collection of subsets of X closed under complements,
countable unions, and countable intersections. Elements in M are the measurable sets.

() u : M — [0,400] is a function satisfying that for any countable collection of disjoint sets in M,
Eq, Ey, - - - satisfies u (g Ex) = Yk #(Eg). u(E) is the measure of E.

Rmk. (Lebesgue-Radon-Nikodym Theorem) All the measures must be a combination of the following:

(i) Let X = {x;}, M = P(X), define u({xx}) = uy where {my} is a sequence of numbers in [0, +co].

For any E S Mr we haVe V(E) = Zg:kxkEE'

(ii) Let X € R", M = {Lebesgue measurable sets} and for any E € M, u(E) = [ fdx where f is a
given non-negative measurable function on R".

5.2 Exterior Measure

Defn. Outer Measure.

An outer measure on a set X is a function y. from all subsets of X to [0, +oo] satisfying that:
(i) p«(@) =0.
(ii) If E; C Ey, then pu. (El) < ]/l*(Ez)

(iii) For any countable collection of sets E1, Ep, - - - in X, pu(Ug Ex) < Yok s (Eg).

Defn. Carathéodory Measurable Sets.
Given E C X, E is Carathéodory measurable if for any A C X:

ue(A) = pe(ANE) + p (AN E).
Rmk. This is equivalent to the definition of Lebesgue measurable sets.
Rmk. By (iii) in outer measure, y.(A) < p«(ANE) + u.(A N E) is satisfies.

Thm. Outer Measure Forms Measure.

Given a outer measure p, on a set X, the collection M of all Carathéodary measurable set form a o-
algebra. Moreover, . restricted to M is a measure.

Rmk. Any set of outer measure 0 is Carathéodory measurable. Since if y.(Z) = 0, then p,(A) > uast(AN
Z)+ us (AN Z°) = pgst(AN Z°) by monotonicity.

Defn. o-finite.

We say a measure space is (X, M, p) is o-finite if X can be written as the union of countably many mea-
surable sets of finite measure.

Defn. Borel Algebra.

The Borel o-algebra, By denotes the smallest o-algebra containing all open sets.

Defn. Metric Outer Measure.

An outer measure p, on (X,d) is a metric outer measure if:

Ux(AUB) = puy(A)+ u«(B) forany A,B C X,
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such that:
d(A,B) :=inf{d(x,y) : x € A,y € B} > 0.

Thm. Metric Outer Measure Forms Measure.

If y. is a metric outer measure on (X,d), then Borel sets in X are Carathéodory measurable and y. re-
stricted to By is a measure.

Rmk. From the previous theorem, M is a o-algebra already. Then, we need to show that all open/closed
sets are Carathéodory measurable. Here for a closed set F, we define Ey := {x € ANF : d(x,F) > }}.
We prove that limy_,, p (A N F°) by letting Cy := Eg1 \ Ex.

Defn. Borel Set.

Given a metric space (X, d), a measure y defined on all Borel sets of X is the Borel Set.

Prop. Suppose the Borel measure y is finite on all balls in X with finite radii, then for any Borel set E, any
€ > 0, there exists open set G D E, closed set F C E such that 4(G\ E) < eand u(E\ F) <e.

Lemma. Convergence for Monotone Sequences.
Let (X, M, u) be a measure space, if measurable sets E; * E, then u(E;) /' u(E).

5.3 Pre-Measure

Defn. Pre-Measure.

Given a set X, an algebra in X is a non-empty collection of subsets of X that are closed under complements,
finite unions, and finite intersections. A pre-measure on an algebra A is a function g : A — [0, +o0] that
satisfies:

* u(@) =0.

e If Ay, Ay, --- is a countable collection of disjoint sets in .4 with LI Aj € A, then:
Ho <|_| Ak) =) Ho(Ap).
k k

Lemma. The Extension Theorem.

If yp is a pre-measure on an algebra A, define an outer measure y, on any subset E of X as:

p«(E) =inf ¢ Y po(Aj) : E C | JAj where Aj € Aforall j
j j
Then . is an outer measure on X that satisfies:

(i) p«(A) =pno(A) forall A € A.
(ii) Any set in A is Carathéodary measurable with respect to p,.

Rmk. The extension is unique. Let M be a o-algebra containing A, let i be the measure generated from
Ms. Assume that y is o-finite, then for any other measure v defined on M such that v = y on sets in A,
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v(E) = u(E) for any E € M.

Appl. Product Measure.
Let (X1, M1, 1) and (Xp, My, up) be 2 o-finite measure space. We construct a measure space on X :=
X1 x Xp by having the measure:

po(A X B) = p1(A) - j2(B).

Here, we have that A as the smallest algebra containing all measurable rectangles. Note that for all

products as the disjoint union of rectangles, we have:

uo(A x B) =Y po(A; x Bj).



