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1 Mathematical Induction

1.1 Princ.: Principle of Mathematical Induction
To show a statement P(n) about n € Z~ is true for all n € Z+, it’s suffices to show that:
1. Base case: P(1) is true;

2. Inductive case: For any k € Z, if P(k) is true, then P(k + 1) is true.

1.2 Princ.: Well-Ordering Principle

Any non-empty set of positive integers has the least element.
Rmk.: This is equivalent to the principle of mathematical induction.

2 Euclid’s Division Lemma

2.1 Thm.: Euclid’s Division Lemma

Leta,b € Z and b > 0. There exist unique integers g and r such that0 <r < band a = gb +r.

3 Divisibility
3.1 Defn.: Divisibility

Let a,b € Z. We say b divides 4, or b is a divisor of 4, or a is a multiple of b, if there exists an integer g
such that a = gb.

If b divides a, we write b|a. If b does not divide a, we write b { a.

Rmk.: By definition, b can be 0, where 0 only divides 0.

3.2 Thm.: Linear Combinations of Multiples are Multiples

Leta,b,c € Z. If a|b and a|c, then a|(mb + nc) for all integral m and n.

3.3 Defn.: Greatest Common Divisor

The greatest common divisor of two integers a and b, not both zero, is the largest positive integer that
divides both a and b, denotes ged(a,b).

Rmk.: If 2, and b are integers, not both zero, then gcd(a, b) always exists and is unique.

Rmk.: gcd(+a, £b) = ged(+a, Fb).

3.4 Mthd.: Euclidean Algorithm

If a = gb+rwherea,b,q,r € Zand b # 0, then ged(a,b) = ged(b, 7).
In Euclidean Algorithm, write a = r1 as a; = qb + ;1 until we finish r, = 0 while r,,_1 is ged(a, b).
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3.5 Thm.: Integral Solutions to Linear Equations

Let a,b,c € Z. Suppose that a and b are not both zero. There exists integers x and y such that ax + by = ¢
if and only if ged(a, b)|c.

3.6 Defn.: Prime

A positive integer p # 1 is said to be prime if its only positive divisors are 1 and p.

3.7 Defn.: Co-prime

Two integers are said to be co-prime (or relatively prime) if their only positive common divisor (equivalent
to the greatest common divisor when the integers are not both 0) is 1.

3.8 Thm.: Divisibility of Composite Numbers

Leta,b,c € Z. If gcd(a,c) = 1 and a|(bc), then alb.

Cor.: Let a,b € Z and p be prime. If p|(ab) and p { a, then p|b.

Cor.: Let aj,ap,-- - ,a, be integers. Let p be a prime. If p|(ajay - - - a,), then there exists some 1 <i < n
such that p|a;.

4 Linear Diophantine Equations

4.1 Thm.: Solutions to Linear Diophantine Equations

If ged(a,b) = 1 and (xg, o) is a solution to ax + by = cis {(x,y)|x = xo + bt,y = yo —at, t € Z}.

4.2 Mthd.: Solving Linear Diophantine Equations
To solve the equation ax + by = ¢ where a,b,c € Z for a,b # 0.
1. Reduce to the case where ged(a,b) = 1;
2. Find a solution (xg, yy) by Euclidean Algorithm;
x = xo + bt

3. Find all integral solutions with form where t € Z.
y=yo—at

5 Fundamental Theorem of Arithmetic

5.1 Princ.: Principle of Strong Induction

Let P(n) be a statement about positive integer n. To show that P(k) is true for all n € Z, it suffices to

show the following statements:
1. P(1) is true;

2. For any n € Z~, if P(k) is true for all positive integers k < n, then P(n) is true.
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5.2 Thm.: Fundamental Theorem of Arithmetic
For each integer n > 1, there exist primes p; < p2 < --- < p, and positive integer n;, 1 < i < k such that
k

n= H pii call a prime factorization, and this factorization is unique.
i=1

6 Permutations and Combinations

6.1 Defn.: Permutation

An r-permutation of a set S of n elements is an ordered selection of r elements from S (0 < r < n).

6.2 Thm.: Calculation of Permutation

The number of r-permutations of a set of n elements, denotes by P, is ,P, =n(n—1)---(n—r+1) =
n!

(n—r)l

6.3 Defn.: Combination

An r-combination of a set S of n elements in a subset of S having r elements (0 < r < n).

6.4 Thm.: Calculation of Combination

b -1)---(n—r+1
The number of -combinations of a set of 1 elements, denotes by (1), is (:) = "—Pr = n(n—1) r'(n r+1)
rtr °

n!
(n—r)tr!’
Cor.: The product of any n consecutive positive integers is divisible by n!, i.e., n!/|[N(N—1)--- (N —n+1)
N(N-1)---(N—-n+1) (N) cz

because
n! n

7 Congruence

7.1 Defn.: Congruence
Leta,b,n € Z. a is congruent to b modulo 7, denotes a = b(mod n) if n|(a — b).
Remark: n can be zero by our definition.
7.2 Thm.: Properties of Congruence
Leta,b,c,n € Z:
1. Reflexive: a = a(mod n);
2. Symmetric: If 2 = b(mod 1), then b = a(mod n);
3. Transitive: If 2 = b(mod n) and b = c(mod n), then a = c(mod n).

Rmk.: In other words, Congruence modulo is an equivalence relation.
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7.3 Thm.: Ring Structure of Congruence

Let aq,ap,b1,by,n € Z such that a; = ay(mod n) and by = by(mod n). Then:
1. Addition: a1 + by = by + by(mod n);
2. Subtraction: a1 — by = ap — bp(mod n);
3. Multiplication: a1b; = ayb;(mod n).

Rmk.: Division does not necessarily preserve the congruence.

8 Residue Systems

8.1 Defn.: Residue

If a,b,m € Z and a = b(mod m), b is a residue of 4 modulo m.
Rmk.:: b may not satisfy 0 < b < m — 1 by definition.

8.2 Defn.: Complete Residue System
A set of integers {rl, o, ,tu} is called a complete residue system modulo m if:
1. r; # rj(mod m) whenever i # j;

2. For any n € Z, there exists an r; such that n = r;(mod m).

8.3 Thm.: A Complete Residue System

The set {0,1,--- ,m — 1} is a complete residue system modulo .

8.4 Thm.: Length of Complete Residue System

Any complete residue system of modulo m are consisted of exactly m elements.

8.5 Defn.: Reduced Residue System

A set of integers {ry,12,- -+, 15} is called a reduced residue system modulo m if:
1. ged(r,m) =1foralll <i<s;
2. r; # rj(mod m) whenever i # j;

3. For any n € Z such that gcd(n, m) = 1, there exists an r; such that n = r;(mod m).

8.6 Thm.: A Reduced Residue System

Let S be a complete residue system modulo m. Then {r € S|gcd(r,m) = 1} is a reduced residue system

modulo m.



Elem. Number Theory Theorems and Definitions 5

8.7 Defn.: Euler ¢ Function

The Euler ¢ function, denotes ¢ (), is defined to be the cardinality of {n € Z|0 <n <m —1,gcd(n,m) =
1}.

8.8 Thm.: Length of Reduced Residue System

Any reduced residue system modulo m is consisted of exactly ¢(m) elements.

9 Linear Congruence

9.1 Thm. Solutions to Linear Congruence

Let a,b,c € Z where a and b are non-zero. Denote d = gcd(a, b). Then the congruence ax = ¢(mod b) has
a solution if and only if d|c.

Rmk.: If d|c, then ax = c(mod b) has d mutually incongruent solutions modulo c.

Cor.: For ax = c¢(mod b), if gcd(a, b) = 1, then all the solutions are congruent modulo b, where the solution
of ax = ¢(mod b) is unique modulo b.

9.2 Mthd: Solving Linear Congruence

To solve the linear congruence ax = c(mod b), where a,b,c € Z.

1. Find one solution: Use Euclidean Algorithm, find solutions using properties of congruence;

2. Find all incongruent integral solutions: Use Theory of Linear Diophantine Equations and properties
of congruence;

3. Find all integral solutions: Find all the solutions.

9.3 Defn.: Inverse

If ged(a,b) = 1, the unique solution modulo b to ax = 1(mod b) is the inverse of 4 modulo b.

10 Theorems of Euler, Fermat, and Wilson (Leibniz)
10.1 Thm.: Euler’s Theorem

Letm € Z-gand a € Z. If ged(a, m) = 1, then a?(™) = 1(mod m).

10.2 Thm.: Fermat’s Little Theorem

If p is a prime and a € Z, then a” = a(mod p).

10.3 Thm.: Wilson’s/Leibniz’s Theorem

Let m € Z~4. Then (m —1)! = —1(mod m) if and only if m is a prime.
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11 Chinese Remainder Theorem

11.1 Thm.: Chinese Remainder Theorem

S
Let my, my, ---, ms be pairwise co-prime, non-zero integers. Denote M = Hmi. Let a1, ap, - -+, a5 be
i=1

a1x = by(mod my)
apx = by (mod my)
integers such that ged(a;, m;) = 1 for all 1 < i < s. Then the system of congruences

asx = bs(mod m;)
has a simultaneous solution that is unique modulo M.
Rmk.: The Chinese Remainder Theorem is the polynomial congruences of degree 1.

11.2 Mthd.: Solving a System of Linear Congruence

Let mq, my, - - -, ms be pairwise co-prime, non-zero integers. Denote M = st':l m;. Let ay, ap, - -+, as be
a1x = by(mod my)

apx = by(mod my)
integers such that ged(a;, m;) = 1forall 1 <i <s. Then the system of congruences

asx = bs(mod ms;)

) ) a;x = b;(mod m;)
can be converted to s system of congruences, where the i-th system is:
ajx = 0(mod m;) for all j # i

12 Polynomial Congruence

12.1 Thm. Maximum Number of Solutions for Polynomial Congruence

Let f(x) = ayx" +a, 1x"~' 4+ --- +ag be a polynomial with integral coefficients and a, # 0. If p is
a prime such that p t a,, then the congruence f(x) = 0(mod p) has at most n mutually incongruent
solutions modulo p.

Rmk.: f(x) = 0(mod p) does not always have solution when p { a,,.

12.2 Defn.: Degree of the 0 Polynomial

The 0 polynomial is declared to have degree —oo.

13 Euler’s ¢ Function

13.1 (8.7) Defn.: Euler ¢ Function

The Euler ¢ function, denotes ¢(n), is defined to be the cardinality of {n € Z|0 <n < m —1,ged(n,m) =

1.
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13.2 Prep.: ¢(p")

If p is a prime and 1 € Z>1, then ¢(p") = p" — p" 1 = p"1(p—1).

13.3 Thm.: Sum over Euler ¢ Function of Divisors

The sum over ¢ function of positive division of 1, denotes } _¢(d), equals to n, i.e., Y ¢(d) = n.
dln dln

13.4 Thm.: Multiplicativity of Euler ¢ Function

Let m,n € Z>1 be co-prime. Then ¢(mn) = ¢(m)p(n).
Cor.: Let p be a prime. Euler ¢ function of n can be written as the product of n and the product over all

1 1
the one minus the inverse of prime factors of 1, denotes | | <1 — P) Jie, p(n)=n]] (1 — p).
pln pln

14 d and o Function

14.1 Defn.: d(n)

For n € Z-1, d(n) is defined as the number of positive divisors of .

14.2 Prep.: d(p")

If pisaprime and n € Z>q, thend(p") =n+1.

14.3 Thm. Multiplicativity of d Function

Let m,n € Z>1 be co-prime. Then d(mn) = d(m)d(n).
k k
Cor.: For n = [ [ pi where p;’s are positive distinct primes and n; € Z>1, d(n) = [ [(n; +1).
i=1 i=1

144 Defn.: c(n)

For n € Z>1, o(n) is defined as the sum of all positive divisors of .

14.5 Prep.: c(p")

anrl -1
If p is a prime and n € Z>, then o(p") = o1

14.6 Thm.: Multiplicativity of o Function

Let m,n € Z>1 be co-prime. Then o(mn) = o(m)o(n).
ok ko ni+l
n; p " _— . p;' —1
Cor.: For n = [ [ p{" where p;’s are positive distinct primes and n; € Z>1, o(n) =] | Tpi—1
i=1 =1 Fi—
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k k
Rmk.: Forn = H p?" , m is a positive divisor of n if and only if m = H pT" where 0 < m; < n;. Therefore,
i=1 i=1

k n,~_
0'(1’[) = H ( ._Op;”i>.

i=1
15 Multiplicative Arithmetic Function

15.1 Defn.: Arithmetic Function

An arithmetic function is a map f: Z>; — C. An arithmetic function is multiplicative if f(mn) = f(m) -
f(n) whenever ged(m, n) = 1.

15.2 (13.4, 14.3, 14.6) Prep.: Examples of Multiplicative Arithmetic Functions

¢(n), d(n), and o(n) are multiplicative arithmetic functions.

15.3 Defn.: Mdbius Function
1, ifn=1
For n € Z>1, u(n) = {0, if p?|n for some primep or equivalently de-
(=1)", if n = p1pa - - - pr where p;’s are distinctive primes
0, if p?|n for some prime p
fined as p(n) = ¢ 1, if n is square free and has an even number of prime factors

—1, if n is square free and has an odd number of prime factors

154 Thm.: Multiplicativity of Mdébius Function

p(n) is a multiplicative arithmetic function.

16 Mobius Inversion Formula

16.1 Thm. Sum of Mdbius Function of Divisors

lifn=1
Forn € Z>1, Y _p(d) =
d|n Oifn>1

16.2 Thm.: Mobius Inversion Formula

Let f(n) and g(n) be arithmetic functions. The following conditions are equivalent:

1. f(n) = X‘;g(d) for all n;
dn

2. ¢(n) = Z‘u(d)f (g) for all n.

dn



Elem. Number Theory Theorems and Definitions 9

16.3 Defn.: Mobius Pair

If two arithmetic functions f(n) and g(n) satisfy one of the condition that:

1. f(n) =) _g(d) for all n;
dln

2. g(n) =Y _u(d)f (g) for all .

dln

Then, (f(n),g(n)) is a Mdbius pair. Rmk.: If (f(n),g(n)) is a Mobius pair, (g(n), f(n)) is not necessarily
a Mobius pair.
E.g.: (n,¢(n)), (d(n),1), and (c(n),n) are Mobius pairs.

16.4 Thm.: Equivalence in Multiplicativity

Let (f(n),g(n)) be a Mobius pair of arithmetic functions. Then f(n) is multiplicative if and only if g(n) is
multiplicative.

17 Primitive Roots

17.1 Defn.: Order

Let m € Z~o, a € Z. Suppose ged(a,m) = 1. The multiplicative order of 2 modulo m is the smallest
positive integer d such that a? = 1(mod m).
Rmk.: The smallest of such a d exists and d < ¢(m) by Euler Theorem.

17.2 Thm. Divisibility of Order

If d is the order of 2 modulo m, and 4" = 1(mod m) for some n € Z~, then d|n.

17.3 Defn.: Primitive Roots

If ¢(n) is the order of @ modulo m, then a is a primitive root modulo m.

Rmk.: A primitive root may not exist.

174 Thm.: Reduced Residue System from Primitive Root

2

If a is a primitive root modulo m, then 4,4, - - - ,a?(m) form a reduced residue system modulo m.

17.5 Thm.: Order of the Powers

If d is the order of @ modulo m and 7 is a positive integer such that gcd(n,d) = e, then g is the order of a"
modulo .

Cor.: If a is a primitive root modulo m, then a” is a primitive root modulo m if and only if ged (1, ¢(m)) = 1.
Cor.: If there exists a primitive root modulo m, then there are exactly ¢(¢(m)) mutually incongruent
primitive roots modulo m.
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17.6 Thm.: Primes have Primitive Root

If p is a prime, there exists a primitive root modulo p.

18 Asymptotic Distribution of Primes

18.1 Defn.: 77(x)

For x € R+, denote by 77(x) the number of primes less than or equal to x.

18.2 Thm.: Euclid’s Theorem

There are infinitely many primes, i.e., lgr1 7t(x) = oo.
X— 00
Rmk.: For x € Ry, 7(x) < [x] < x.

18.3 Thm.: Prime Number Theorem

For x € R+, xlgn x;Tl(;Cg)x =1.

18.4 Tchebychev’s Theorem
X
log x

There exists ¢1, ¢, > 0 such that ¢ < 7(x) <cp for all x > 2.

x
log x

18.5 Thm.: Weaker Results of Prime Number Theorem

n(x) _ ¢(k)  k
M VA 6 AT
For any k € Z, S —0—x
M1 1
If M €Z-yand p1,p2,- -, ps are all primes in {1,2,--- , M}, then Z - < (—1)
n=1 iz (1— 5
- pi

Cor.: Suppose p; < pp < --- are all the prime numbers. Then Z ; = o0.
i=1Pi

Jim &)

x—oo X

=0.

19 Quadratic Residue and Euler’s Criterion

19.1 Defn.: Quadratic Residue

Let p be a prime and a € Z. If p { a and x*> = a(mod p) has a solution, then a is a quadratic residue

modulo p.

19.2 Thm.: Quadratic Residue and Primitive Root

Let p be an odd prime and a € Z such that p { a. Let g be a primitive root modulo p. Let r € Z be such
that ¢" = a(mod p). Then 4 is a quadratic residue modulo p if and only if 7 is even.
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19.3 Euler’s Criterion

Let p be an odd prime, and a € Z, then a is a quadratic residue modulo p if and only if a(?~1)/2 =
1(mod p).
20 Legendre Symbol

20.1 Defn.: Legendre Symbol

Let p be an odd prime and 4 € Z. The Legendre symbol of a over p, denotes (Z), is defined to be

0, if pla
a
<P> = {1, if a is a quadratic residue modulo p

—1, otherwise

20.2 Thm.: Properties of Legendre Symbol

Let p be an odd prime, the follow properties are ture:

1. If a = b(mod p), then (;) = (Ilj)/
> (5)-0G) ()
3. alP=1)/2 = (%) (mod p).

20.3 Defn.: Jacobi Symbol

If m = p1py - - - pr where p; are odd primes (not necessarily distinct), then (%) = (;) (;) e (;)
1 2 r
21 Quadratic Reciprocity Law

21.1 Thm.: Gaussian’s Lemma

Let p be an odd prime and a4 € Z such that p { a. For n € Z define the least residue of n modulo p

(denoted by r(n)) to be the unique integer x € (—g, g} such that n = x(mod p). Let m be the number of
-1
integers in {a,24,- - -, P 7 a} whose least modulo p are negative. Then (;l) =(-1)™

Cor.: If p is an odd prime, then (_Pl) = (—1)(}771)/2.

Cor.: If p is an odd prime, then (;) = (—1)(7”271)/8.
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21.2 Thm.: Quadratic Reciprocity Law

If p and g are distinct odd primes, then <Z> <Z> = (=1)(P~ D174,
Rmk.: <Z> = — (Z) only if p = g = 3(mod4), and <g> = (Z) otherwise.

21.3 Thm.: Existence of Quadratic Residue

Let p be an odd prime and a € Z such that p { a. Let n € Z~, then the Congruence x>

a solution if and only if ( ;) =1.

= a(mod p") has

22 Sum of Two Squares

22.1 Fermat’s Theorem on Sum of Two Squares

Let p be an odd prime. There exist integers x,y € Z such that p = x> + 2 if and only if p = 1(mod 4).



