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1 Mathematical Induction

1.1 Princ.: Principle of Mathematical Induction

To show a statement P(n) about n ∈ Z>0 is true for all n ∈ Z>0, it’s suffices to show that:

1. Base case: P(1) is true;

2. Inductive case: For any k ∈ Z>0, if P(k) is true, then P(k + 1) is true.

1.2 Princ.: Well-Ordering Principle

Any non-empty set of positive integers has the least element.
Rmk.: This is equivalent to the principle of mathematical induction.

2 Euclid’s Division Lemma

2.1 Thm.: Euclid’s Division Lemma

Let a, b ∈ Z and b > 0. There exist unique integers q and r such that 0 ≤ r < b and a = qb + r.

3 Divisibility

3.1 Defn.: Divisibility

Let a, b ∈ Z. We say b divides a, or b is a divisor of a, or a is a multiple of b, if there exists an integer q
such that a = qb.
If b divides a, we write b|a. If b does not divide a, we write b - a.
Rmk.: By definition, b can be 0, where 0 only divides 0.

3.2 Thm.: Linear Combinations of Multiples are Multiples

Let a, b, c ∈ Z. If a|b and a|c, then a|(mb + nc) for all integral m and n.

3.3 Defn.: Greatest Common Divisor

The greatest common divisor of two integers a and b, not both zero, is the largest positive integer that
divides both a and b, denotes gcd(a, b).
Rmk.: If a, and b are integers, not both zero, then gcd(a, b) always exists and is unique.
Rmk.: gcd(±a,±b) = gcd(±a,∓b).

3.4 Mthd.: Euclidean Algorithm

If a = qb + r where a, b, q, r ∈ Z and b 6= 0, then gcd(a, b) = gcd(b, r).
In Euclidean Algorithm, write a = r1 as ai = qb + ri+1 until we finish rn = 0 while rn−1 is gcd(a, b).
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3.5 Thm.: Integral Solutions to Linear Equations

Let a, b, c ∈ Z. Suppose that a and b are not both zero. There exists integers x and y such that ax + by = c
if and only if gcd(a, b)|c.

3.6 Defn.: Prime

A positive integer p 6= 1 is said to be prime if its only positive divisors are 1 and p.

3.7 Defn.: Co-prime

Two integers are said to be co-prime (or relatively prime) if their only positive common divisor (equivalent
to the greatest common divisor when the integers are not both 0) is 1.

3.8 Thm.: Divisibility of Composite Numbers

Let a, b, c ∈ Z. If gcd(a, c) = 1 and a|(bc), then a|b.
Cor.: Let a, b ∈ Z and p be prime. If p|(ab) and p - a, then p|b.
Cor.: Let a1, a2, · · · , an be integers. Let p be a prime. If p|(a1a2 · · · an), then there exists some 1 ≤ i ≤ n
such that p|ai.

4 Linear Diophantine Equations

4.1 Thm.: Solutions to Linear Diophantine Equations

If gcd(a, b) = 1 and (x0, y0) is a solution to ax + by = c is {(x, y)|x = x0 + bt, y = y0 − at, t ∈ Z}.

4.2 Mthd.: Solving Linear Diophantine Equations

To solve the equation ax + by = c where a, b, c ∈ Z for a, b 6= 0.

1. Reduce to the case where gcd(a, b) = 1;

2. Find a solution (x0, y0) by Euclidean Algorithm;

3. Find all integral solutions with form

x = x0 + bt

y = y0 − at
where t ∈ Z.

5 Fundamental Theorem of Arithmetic

5.1 Princ.: Principle of Strong Induction

Let P(n) be a statement about positive integer n. To show that P(k) is true for all n ∈ Z>0, it suffices to
show the following statements:

1. P(1) is true;

2. For any n ∈ Z>0, if P(k) is true for all positive integers k < n, then P(n) is true.
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5.2 Thm.: Fundamental Theorem of Arithmetic

For each integer n > 1, there exist primes p1 < p2 < · · · < pr and positive integer ni, 1 ≤ i ≤ k such that

n =
k

∏
i=1

pni
i call a prime factorization, and this factorization is unique.

6 Permutations and Combinations

6.1 Defn.: Permutation

An r-permutation of a set S of n elements is an ordered selection of r elements from S (0 ≤ r ≤ n).

6.2 Thm.: Calculation of Permutation

The number of r-permutations of a set of n elements, denotes by nPr, is nPr = n(n− 1) · · · (n− r + 1) =
n!

(n− r)!
.

6.3 Defn.: Combination

An r-combination of a set S of n elements in a subset of S having r elements (0 ≤ r ≤ n).

6.4 Thm.: Calculation of Combination

The number of r-combinations of a set of n elements, denotes by (n
r), is

(
n
r

)
=

nPr

rPr
=

n(n− 1) · · · (n− r + 1)
r!

=

n!
(n− r)!r!

.

Cor.: The product of any n consecutive positive integers is divisible by n!, i.e., n!|N(N− 1) · · · (N− n + 1)

because
N(N − 1) · · · (N − n + 1)

n!
=

(
N
n

)
∈ Z.

7 Congruence

7.1 Defn.: Congruence

Let a, b, n ∈ Z. a is congruent to b modulo n, denotes a ≡ b(mod n) if n|(a− b).
Remark: n can be zero by our definition.

7.2 Thm.: Properties of Congruence

Let a, b, c, n ∈ Z:

1. Reflexive: a ≡ a(mod n);

2. Symmetric: If a ≡ b(mod n), then b ≡ a(mod n);

3. Transitive: If a ≡ b(mod n) and b ≡ c(mod n), then a ≡ c(mod n).

Rmk.: In other words, Congruence modulo is an equivalence relation.
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7.3 Thm.: Ring Structure of Congruence

Let a1, a2, b1, b2, n ∈ Z such that a1 ≡ a2(mod n) and b1 ≡ b2(mod n). Then:

1. Addition: a1 + b1 ≡ b1 + b2(mod n);

2. Subtraction: a1 − b1 ≡ a2 − b2(mod n);

3. Multiplication: a1b1 ≡ a2b2(mod n).

Rmk.: Division does not necessarily preserve the congruence.

8 Residue Systems

8.1 Defn.: Residue

If a, b, m ∈ Z and a ≡ b(mod m), b is a residue of a modulo m.
Rmk.:: b may not satisfy 0 ≤ b < m− 1 by definition.

8.2 Defn.: Complete Residue System

A set of integers {r1, r2, · · · , rn} is called a complete residue system modulo m if:

1. ri 6≡ rj(mod m) whenever i 6= j;

2. For any n ∈ Z, there exists an ri such that n ≡ ri(mod m).

8.3 Thm.: A Complete Residue System

The set {0, 1, · · · , m− 1} is a complete residue system modulo m.

8.4 Thm.: Length of Complete Residue System

Any complete residue system of modulo m are consisted of exactly m elements.

8.5 Defn.: Reduced Residue System

A set of integers {r1, r2, · · · , rs} is called a reduced residue system modulo m if:

1. gcd(ri, m) = 1 for all 1 ≤ i ≤ s;

2. ri 6≡ rj(mod m) whenever i 6= j;

3. For any n ∈ Z such that gcd(n, m) = 1, there exists an ri such that n ≡ ri(mod m).

8.6 Thm.: A Reduced Residue System

Let S be a complete residue system modulo m. Then {r ∈ S| gcd(r, m) = 1} is a reduced residue system
modulo m.



Elem. Number Theory Theorems and Definitions 5

8.7 Defn.: Euler φ Function

The Euler φ function, denotes φ(n), is defined to be the cardinality of {n ∈ Z|0 ≤ n ≤ m− 1, gcd(n, m) =

1}.

8.8 Thm.: Length of Reduced Residue System

Any reduced residue system modulo m is consisted of exactly φ(m) elements.

9 Linear Congruence

9.1 Thm. Solutions to Linear Congruence

Let a, b, c ∈ Z where a and b are non-zero. Denote d = gcd(a, b). Then the congruence ax ≡ c(mod b) has
a solution if and only if d|c.
Rmk.: If d|c, then ax ≡ c(mod b) has d mutually incongruent solutions modulo c.
Cor.: For ax ≡ c(mod b), if gcd(a, b) = 1, then all the solutions are congruent modulo b, where the solution
of ax ≡ c(mod b) is unique modulo b.

9.2 Mthd: Solving Linear Congruence

To solve the linear congruence ax ≡ c(mod b), where a, b, c ∈ Z.

1. Find one solution: Use Euclidean Algorithm, find solutions using properties of congruence;

2. Find all incongruent integral solutions: Use Theory of Linear Diophantine Equations and properties
of congruence;

3. Find all integral solutions: Find all the solutions.

9.3 Defn.: Inverse

If gcd(a, b) = 1, the unique solution modulo b to ax ≡ 1(mod b) is the inverse of a modulo b.

10 Theorems of Euler, Fermat, and Wilson (Leibniz)

10.1 Thm.: Euler’s Theorem

Let m ∈ Z>0 and a ∈ Z. If gcd(a, m) = 1, then aφ(m) ≡ 1(mod m).

10.2 Thm.: Fermat’s Little Theorem

If p is a prime and a ∈ Z, then ap ≡ a(mod p).

10.3 Thm.: Wilson’s/Leibniz’s Theorem

Let m ∈ Z>1. Then (m− 1)! ≡ −1(mod m) if and only if m is a prime.
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11 Chinese Remainder Theorem

11.1 Thm.: Chinese Remainder Theorem

Let m1, m2, · · · , ms be pairwise co-prime, non-zero integers. Denote M =
s

∏
i=1

mi. Let a1, a2, · · · , as be

integers such that gcd(ai, mi) = 1 for all 1 ≤ i ≤ s. Then the system of congruences



a1x ≡ b1(mod m1)

a2x ≡ b2(mod m2)
...

asx ≡ bs(mod ms)

has a simultaneous solution that is unique modulo M.
Rmk.: The Chinese Remainder Theorem is the polynomial congruences of degree 1.

11.2 Mthd.: Solving a System of Linear Congruence

Let m1, m2, · · · , ms be pairwise co-prime, non-zero integers. Denote M = ∏s
i=1 mi. Let a1, a2, · · · , as be

integers such that gcd(ai, mi) = 1 for all 1 ≤ i ≤ s. Then the system of congruences



a1x ≡ b1(mod m1)

a2x ≡ b2(mod m2)
...

asx ≡ bs(mod ms)

can be converted to s system of congruences, where the i-th system is:

aix ≡ bi(mod mi)

ajx ≡ 0(mod mj) for all j 6= i
.

12 Polynomial Congruence

12.1 Thm. Maximum Number of Solutions for Polynomial Congruence

Let f (x) = anxn + an−1xn−1 + · · · + a0 be a polynomial with integral coefficients and an 6= 0. If p is
a prime such that p - an, then the congruence f (x) ≡ 0(mod p) has at most n mutually incongruent
solutions modulo p.
Rmk.: f (x) ≡ 0(mod p) does not always have solution when p - an.

12.2 Defn.: Degree of the 0 Polynomial

The 0 polynomial is declared to have degree −∞.

13 Euler’s φ Function

13.1 (8.7) Defn.: Euler φ Function

The Euler φ function, denotes φ(n), is defined to be the cardinality of {n ∈ Z|0 ≤ n ≤ m− 1, gcd(n, m) =

1}.
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13.2 Prep.: φ(pn)

If p is a prime and n ∈ Z≥1, then φ(pn) = pn − pn−1 = pn−1(p− 1).

13.3 Thm.: Sum over Euler φ Function of Divisors

The sum over φ function of positive division of n, denotes ∑
d|n

φ(d), equals to n, i.e., ∑
d|n

φ(d) = n.

13.4 Thm.: Multiplicativity of Euler φ Function

Let m, n ∈ Z≥1 be co-prime. Then φ(mn) = φ(m)φ(n).
Cor.: Let p be a prime. Euler φ function of n can be written as the product of n and the product over all

the one minus the inverse of prime factors of n, denotes ∏
p|n

(
1− 1

p

)
, i.e., φ(n) = n ∏

p|n

(
1− 1

p

)
.

14 d and σ Function

14.1 Defn.: d(n)

For n ∈ Z≥1, d(n) is defined as the number of positive divisors of n.

14.2 Prep.: d(pn)

If p is a prime and n ∈ Z≥1, then d(pn) = n + 1.

14.3 Thm. Multiplicativity of d Function

Let m, n ∈ Z≥1 be co-prime. Then d(mn) = d(m)d(n).

Cor.: For n =
k

∏
i=1

pni
i where pi’s are positive distinct primes and ni ∈ Z≥1, d(n) =

k

∏
i=1

(ni + 1).

14.4 Defn.: σ(n)

For n ∈ Z≥1, σ(n) is defined as the sum of all positive divisors of n.

14.5 Prep.: σ(pn)

If p is a prime and n ∈ Z≥1, then σ(pn) =
pn+1 − 1

p− 1
.

14.6 Thm.: Multiplicativity of σ Function

Let m, n ∈ Z≥1 be co-prime. Then σ(mn) = σ(m)σ(n).

Cor.: For n =
k

∏
i=1

pni
i where pi’s are positive distinct primes and ni ∈ Z≥1, σ(n) =

k

∏
i=1

pni+1
i − 1
pi − 1

.
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Rmk.: For n =
k

∏
i=1

pni
i , m is a positive divisor of n if and only if m =

k

∏
i=1

pmi
i where 0 ≤ mi ≤ ni. Therefore,

σ(n) =
k

∏
i=1

(
ni

∑
mi=0

pmi
i

)
.

15 Multiplicative Arithmetic Function

15.1 Defn.: Arithmetic Function

An arithmetic function is a map f : Z≥1 → C. An arithmetic function is multiplicative if f (mn) = f (m) ·
f (n) whenever gcd(m, n) = 1.

15.2 (13.4, 14.3, 14.6) Prep.: Examples of Multiplicative Arithmetic Functions

φ(n), d(n), and σ(n) are multiplicative arithmetic functions.

15.3 Defn.: Möbius Function

For n ∈ Z≥1, µ(n) =


1, if n = 1

0, if p2|n for some primep

(−1)r, if n = p1 p2 · · · pr where pi’s are distinctive primes

or equivalently de-

fined as µ(n) =


0, if p2|n for some prime p

1, if n is square free and has an even number of prime factors

−1, if n is square free and has an odd number of prime factors

.

15.4 Thm.: Multiplicativity of Möbius Function

µ(n) is a multiplicative arithmetic function.

16 Möbius Inversion Formula

16.1 Thm. Sum of Möbius Function of Divisors

For n ∈ Z≥1, ∑
d|n

µ(d) =

1 if n = 1

0 if n > 1
.

16.2 Thm.: Möbius Inversion Formula

Let f (n) and g(n) be arithmetic functions. The following conditions are equivalent:

1. f (n) = ∑
d|n

g(d) for all n;

2. g(n) = ∑
d|n

µ(d) f
(n

d

)
for all n.
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16.3 Defn.: Möbius Pair

If two arithmetic functions f (n) and g(n) satisfy one of the condition that:

1. f (n) = ∑
d|n

g(d) for all n;

2. g(n) = ∑
d|n

µ(d) f
(n

d

)
for all n.

Then, ( f (n), g(n)) is a Möbius pair. Rmk.: If ( f (n), g(n)) is a Möbius pair, (g(n), f (n)) is not necessarily
a Möbius pair.
E.g.: (n, φ(n)), (d(n), 1), and (σ(n), n) are Möbius pairs.

16.4 Thm.: Equivalence in Multiplicativity

Let ( f (n), g(n)) be a Möbius pair of arithmetic functions. Then f (n) is multiplicative if and only if g(n) is
multiplicative.

17 Primitive Roots

17.1 Defn.: Order

Let m ∈ Z>0, a ∈ Z. Suppose gcd(a, m) = 1. The multiplicative order of a modulo m is the smallest
positive integer d such that ad ≡ 1(mod m).
Rmk.: The smallest of such a d exists and d ≤ φ(m) by Euler Theorem.

17.2 Thm. Divisibility of Order

If d is the order of a modulo m, and an ≡ 1(mod m) for some n ∈ Z≥0, then d|n.

17.3 Defn.: Primitive Roots

If φ(n) is the order of a modulo m, then a is a primitive root modulo m.
Rmk.: A primitive root may not exist.

17.4 Thm.: Reduced Residue System from Primitive Root

If a is a primitive root modulo m, then a, a2, · · · , aφ(m) form a reduced residue system modulo m.

17.5 Thm.: Order of the Powers

If d is the order of a modulo m and n is a positive integer such that gcd(n, d) = e, then
d
e

is the order of an

modulo m.
Cor.: If a is a primitive root modulo m, then an is a primitive root modulo m if and only if gcd(n, φ(m)) = 1.
Cor.: If there exists a primitive root modulo m, then there are exactly φ(φ(m)) mutually incongruent
primitive roots modulo m.
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17.6 Thm.: Primes have Primitive Root

If p is a prime, there exists a primitive root modulo p.

18 Asymptotic Distribution of Primes

18.1 Defn.: π(x)

For x ∈ R>0, denote by π(x) the number of primes less than or equal to x.

18.2 Thm.: Euclid’s Theorem

There are infinitely many primes, i.e., lim
x→∞

π(x) = ∞.
Rmk.: For x ∈ R>0, π(x) ≤ [x] ≤ x.

18.3 Thm.: Prime Number Theorem

For x ∈ R>0, lim
x→∞

π(x)
x/ log x

= 1.

18.4 Tchebychev’s Theorem

There exists c1, c2 > 0 such that c1
x

log x
< π(x) < c2

x
log x

for all x ≥ 2.

18.5 Thm.: Weaker Results of Prime Number Theorem

For any k ∈ Z>0,
π(x)

x
≤ φ(k)

k
+

k
x

.

If M ∈ Z>1 and p1, p2, · · · , ps are all primes in {1, 2, · · · , M}, then
M

∑
n=1

1
n
<

1

∏s
i=1

(
1− 1

pi

) .

Cor.: Suppose p1 < p2 < · · · are all the prime numbers. Then
∞

∑
i=1

1
pi

= ∞.

lim
x→∞

π(x)
x

= 0.

19 Quadratic Residue and Euler’s Criterion

19.1 Defn.: Quadratic Residue

Let p be a prime and a ∈ Z. If p - a and x2 ≡ a(mod p) has a solution, then a is a quadratic residue
modulo p.

19.2 Thm.: Quadratic Residue and Primitive Root

Let p be an odd prime and a ∈ Z such that p - a. Let g be a primitive root modulo p. Let r ∈ Z be such
that gr ≡ a(mod p). Then a is a quadratic residue modulo p if and only if r is even.
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19.3 Euler’s Criterion

Let p be an odd prime, and a ∈ Z, then a is a quadratic residue modulo p if and only if a(p−1)/2 ≡
1(mod p).

20 Legendre Symbol

20.1 Defn.: Legendre Symbol

Let p be an odd prime and a ∈ Z. The Legendre symbol of a over p, denotes
(

a
p

)
, is defined to be

(
a
p

)
=


0, if p|a

1, if a is a quadratic residue modulo p

−1, otherwise

.

20.2 Thm.: Properties of Legendre Symbol

Let p be an odd prime, the follow properties are ture:

1. If a ≡ b(mod p), then
(

a
p

)
=

(
b
p

)
;

2.
(

ab
p

)
=

(
a
p

)(
b
p

)
;

3. a(p−1)/2 ≡
(

a
p

)
(mod p).

20.3 Defn.: Jacobi Symbol

If m = p1 p2 · · · pr where pi are odd primes (not necessarily distinct), then
( n

m

)
=

(
n
p1

)(
n
p2

)
· · ·
(

n
pr

)
.

21 Quadratic Reciprocity Law

21.1 Thm.: Gaussian’s Lemma

Let p be an odd prime and a ∈ Z such that p - a. For n ∈ Z define the least residue of n modulo p
(denoted by r(n)) to be the unique integer x ∈

(
− p

2
,

p
2

]
such that n ≡ x(mod p). Let m be the number of

integers in {a, 2a, · · · ,
p− 1

2
a} whose least modulo p are negative. Then

(
a
p

)
= (−1)m.

Cor.: If p is an odd prime, then
(
−1
p

)
= (−1)(p−1)/2.

Cor.: If p is an odd prime, then
(

2
p

)
= (−1)(p2−1)/8.
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21.2 Thm.: Quadratic Reciprocity Law

If p and q are distinct odd primes, then
(

p
q

)(
q
p

)
= (−1)(p−1)(q−1)/4.

Rmk.:
(

p
q

)
= −

(
q
p

)
only if p ≡ q ≡ 3(mod 4), and

(
p
q

)
=

(
q
p

)
otherwise.

21.3 Thm.: Existence of Quadratic Residue

Let p be an odd prime and a ∈ Z such that p - a. Let n ∈ Z>0, then the Congruence x2 ≡ a(mod pn) has

a solution if and only if
(

a
p

)
= 1.

22 Sum of Two Squares

22.1 Fermat’s Theorem on Sum of Two Squares

Let p be an odd prime. There exist integers x, y ∈ Z such that p = x2 + y2 if and only if p ≡ 1(mod 4).


