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I Introduction to SDEs

I.1 Deterministic and Stochastic Differential Equations

Before getting into stochastic differential equations, we will see a more specific case, namely, ordinary
differential equations.

Example I.1.1. Ordinary Differential Equation.

Consider an ordinary differential equation (ODE):ẋ(t) = b
(

x(t)
)
, t > 0,

x(0) = x0.

Here, the ˙(−) is d/dt, x0 ∈ Rn is the initial condition, and b : Rn → Rn is a given “good” vector field.
Eventually, we have x : [0, ∞)→ Rn as the trajectory. ⌟

In applications, the ODE could be disturbed by a noise (potentially Gaussian), so we want to define a
model to account for that. Hence, we formally define Stochastic differential equations.

Definition I.1.2. Stochastic Differential Equations.

A formal way to define stochastic differential equations (SDEs) is:ẋ(t) = b
(

x(t)
)
+ σ

(
x(t)

)
ξ(t), t > 0,

x(0) = x0.

Here, the additional coefficients, respectively, are:

• b represents the drift coefficient,

• σ represents the diffusion coefficient, and

• ξ represents the m-dimensional noise, or the “white noise.” ⌟

Remark I.1.3. In ODEs, we would enforce conditions on the vector field b to guarantee the existence of
an unique solution. (c.f. Existence and Uniqueness theorem.) ⌟

Here, we can pose the following questions on SDEs:

1. What is ξ?

2. What is the solution to the SDE?

3. Are there existence and uniqueness on SDEs?

4. Are there asymptotic behaviors?
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Then, we will introduce a few problems that concern SDEs.

Example I.1.4. Population Growth Model.

Let N be the population number and t is the time, we mode the population growth as:
dN
dt

= a(t)N(t),

N(0) = N0,

where a(t) can be interpreted as the control factor and N0 is the initial population.
Note that we can model a(t) = r(t) + ξ, where r(t) is the growth rate and ξ is the noise. ⌟

Example I.1.5. Filtering Problem.

Consider that Q is original function and Z is assorted with noise:

Z(s) = Q(s) + (noise).

We want to filter out the noise from observations over Z. ⌟

Example I.1.6. Dirichlet Problem (PDE).

Given a domain U ⊂ Rn and continuous function f on U such that:∆ f = 0 in U,

f = g on ∂U.

Note that we need the boundary condition to make the PDE deterministic. (c.f. Laplace equation.) ⌟

Remark I.1.7. The solution to the above example could be complicated using the methods of PDEs.
We can use SDEs or stopping time of SDEs to “solve” PDEs, namely through E[τU

x ]. ⌟

Example I.1.8. Optimal Stopping Problem.

Let xt model the price of asset or resource on the market and t represent the time. We can model through:

dxt

dt
= rxt + αxt · (noise).

We also acquire that the discount rate is known as ρ (Typically as the bank rate). The model aims to
maximize the expected profit. ⌟

Furthermore, we have Black-Sholes option price formula for modeling the Pricing of Option problems.
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I.2 Heuristics of SDEs

Recall the ODE as:
d
dt

x(t) = b
(

x(t)
)
,

and we let the noise be some random effects, e.g. measure errors or hidden parameters.
We assume that the discrete motion obeys:

x(t + ∆t)− x(t) = F
(
t, x(t); ∆t, Γt,∆t

)
Here are some conditions with the discrete motion:

1. F
(
t, x(t), 0, Γt,0

)
= 0,

2. Γt,∆t ∼ N (0, ∆t),

3. Γt,∆t is independent of x(t). It only depends on the increment ∆t.

In particular, We can have Γt,∆t as ∆Bt ∼ Bt+∆t − Bt, where B is the Brownian motion.

When x is smooth we apply the Taylor expansion with respect to the third and forth variables (∆t and
∆Bt) centered at ∆t = 0 and ∆Bt = 0, yielding that:

F
(
t, x(t); ∆t, ∆Bt

)
− F

(
t, x(t), 0, 0

)︸ ︷︷ ︸
0

= ∂4F
(
t, x(t); ∆t, ∆Bt

)
∆Bt + ∂3F

(
t, x(t); ∆t, ∆Bt

)
∆t

+
1
2

∂2
4F
(
t, x(t); ∆t, ∆Bt

)
(∆Bt)

2 +
1
2

∂2
3F
(
t, x(t); ∆t, ∆Bt

)
(∆t)2

+ ∂3∂4F
(
t, x(t); ∆t, ∆Bt

)
∆t∆Bt + R(∆t, Bt),

where ∂i means the partial derivative with respect to the i-th variable.

Remark I.2.1. Since we are dividing ∆t on both sides, while ∆t→ 0, all the terms with order greater than
1 of ∆t could be omitted. ⌟

Hence, for the above Taylor approximation, we can get rid of the term 1
2 ∂2

3F
(
t, x(t); ∆t, ∆Bt

)
(∆t)2 term

since it involved (∆t)2, while we can also omit the residue part R(∆t, Bt).

Remark I.2.2. Properties of Gaussian Curve.

1. For random variable X ∼ N (µ, σ2), it is a normal distribution with center (mean) µ and variance σ2.
Hence, we have the following moments:

• First moment: E[X] = µ,

• Second moment: E[|X|2] = σ2, and thus E[|X|] = |σ|.

2. For a Gaussian curve, we can be confident around [µ− 3σ, µ + 3σ] interval. ⌟

Recall that ∆Bt = Bt+∆t − Bt ∼ N (0, ∆t), we can conclude with the moments that E[∆Bt] = 0, E[|∆Bt|] =√
∆t, and E[|∆Bt|2] = ∆t.
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Thus, by substituting ∆t∆Bt ∼ ∆t
√

∆t = (∆t)3/2, so we can omit the term ∂3∂4F
(
t, x(t); ∆t, ∆Bt

)
∆t∆Bt.

We can think of our Gaussian curve of ∆Bt ∼ N (0, ∆t) as:

∆Bt

P

Figure I.1. Distribution of ∆Bt ∼ N (0, ∆t) with ∆t = 1 (blue),
√

2/2 (green), 1/2 (red),
√

2/4 (orange).

Proposition I.2.3. Taylor Expansion of SDEs.

We consider the Taylor expansion of the discrete motion as:

x(t + ∆t)− x(t) =
(

∂3F
(
t, x(t); 0, 0

)
+

1
2

∂2
4F
(
t, x(t); 0, 0

))
∆t + ∂4F

(
t, x(t); 0, 0

)
∆Bt +O(∆t)

dx(t) = b
(
t, x(t)

)
dt + σ

(
t, x(t)

)
dBt, (fcn.1)

with b
(
t, x(t)

)
= ∂3F + 1

2 ∂2
4F and σ

(
t, x(t)

)
= ∂4F.

Remark I.2.4. Here, we note that (fcn.1) is a “formal” derivation, since we approximately had
√

∆t/∆t,
and it does not converge as ∆t→ 0. Thus, the Brownian motion B(t) is not differentiable everywhere. ⌟

It is notable that many functions are not “well-behaving,” and we sometimes want to get around the
derivatives by definition of integration (c.f. Functional analysis).

Example I.2.5. Formal Derivative of Characteristic Equation.

Consider the characteristic equation 1[0,∞), which is defined as:

1[0,∞)(x) =

0 when x < 0,

1 when x ≥ 0.

We may have the formal derivative of the characteristic equation as:

(
1[0,∞)(x)

)′
= δ0(x) =

+∞ when x = 0,

0 when x 6= 0.

In this way, we will get around the derivative of functions that are not “well-behaving.” ⌟
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II Probability Theory

II.1 Probability Space

Example II.1.1. Bertrand’s Paradox.

Consider an equilateral triangle inscribed in a circle. Now, suppose that we are picking a chord, randomly,
on the circle, what is the probability that the selected chord is longer than the side length of the equilateral
triangle?
In general, there are three approaches, in which all of them give a different probability:

1. (Random Endpoints Method): Consider one endpoint of the chord fixed, the other endpoint free on
the circle.

Figure II.1. Fixing an endpoint on the circle method.

Through this method, we can see that the chord is longer than the side length of the triangle at
exactly 1/3 of the circumference. Hence, we have the probability as 1/3.

2. (Random Radial Point Method): Here, we fix a radius of the circle, and we look for the chords that
are perpendicular to that radius.

Figure II.2. Fixing a radius on the circle method.

Through this approach, it is not hard to observe that the chord is longer than the side length of the
inscribed triangle on the top half and shorter on the bottom half. Thus, we have the probability as
1/2.

3. (Random Midpoint Method): Here, we note that the chord length is longer than the side length of
the inscribed equilateral triangle if and only if it lies on the inscribed circle of the equilateral triangle.
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Figure II.3. Classifying the midpoint method.

Observe that the radius of the inner circle is exactly 1/2 of the outer circle, so the area of the inner
circle is exactly 1/4 of the outer circle. Thereby, the probability such that the chord is longer than
the side length of the inscribed triangle is 1/4.

Here, the three methodologies give distinct results since the “randomness” are defined differently, i.e., the
distribution is not at random in each case with respect to the other ones. ⌟

To rigorously study the previous problem, we need to define the probability space, what comes first is the
basic measure-based definitions.

Definition II.1.2. σ-Algebra.

Let Ω be a given set, then a σ-algebra F on Ω is a family of subsets of Ω such that:

1. ∅ ∈ F ,

2. F ∈ F implies that Fc ∈ F , where Fc = Ω \ F, and

3. For any {Ai}∞
i=1 ⊂ F , we have A :=

⋃∞
i=1 Ai ∈ F . ⌟

Definition II.1.3. Probability Measure Space.

The pair (Ω,F ) of σ-algebra together with a probability measure P : F → [0, 1] forms a probability
measure space, while P satisfies that:

1. P(∅) = 0 and P(Ω) = 1,

2. (σ-additivity): For any {Ai}∞
i=1 ⊂ F such that they are mutually disjoint, i.e., Ai ∩ Aj = ∅ for all

i 6= j, we have P
(⋃∞

i=1 Ai
)
= ∑∞

i=1 P(Ai). ⌟

Remark II.1.4. The pair (Ω,F , P) defined as above forms a probability space. ⌟

Here, we enforced the σ-algebra F as the set of measurable sets. Without this enforcement, this would be
an outer measure, where we can alternatively defined the Carathéodary measurable sets as the σ-algebra.

Definition II.1.5. Complete Probability Space.
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If F contains all subsets G ⊂ Ω with P-outer measure zero. ⌟

Remark II.1.6. Note that since all sets of outer measure 0 is Carathéodary measurable, it is always
possible to form a σ-algebra including all sets with outer measure zero. ⌟

Definition II.1.7. Smallest σ-algebra.

Given any family U of subsets of Ω, there is a smallest σ-algebra HU containing U , where:

HU =
⋂

H:H is σ-algebra of Ω, and U⊂H
H.

⌟

For example, let U be the collection of all open subsets of an Euclidean space (Rn), then B = HU is called
the Borel σ-algebra on Ω, and the elements B ∈ B is called the Borel sets.

Remark II.1.8. The Lebesgue measurable sets are the completion of Borel measurable sets. ⌟

II.2 Random Variable

Definition II.2.1. F -measurable Function (Random Variable).

Given (Ω,F , P), then a function Y : Ω→ Rn is called F -measurable of:

Y−1(U) := {ω ∈ Ω : Y(ω) ∈ U} ∈ F

for all open sets U ∈ Rn. Here, we say that (Ω,F , P) is a random variable. ⌟

Definition II.2.2. σ-algebra Generated by a Function.

Let X : Ω→ Rn be any function, then the σ-algebra generated by X is smallest σ-algebra on Ω containing
all the sets X−1(U) where U ⊂ Rn is open. ⌟

Here, one can show that HX = {X−1(B) : B ∈ B}, where B is the Borel σ-algebra on Rn. Clearly, HX is
HX-measurable, and HX smallest σ-algebra with such property.

Proposition II.2.3. Doob-Dynkin.

If X, Y : Ω → Rn are two random variables, then Y is HX-measurable if and only if there exists a Borel
measurable function g : Rn → Rn such that Y = g ◦ X.

Proof. (⇐=:) Composition of two measurable functions is measurable, so Y is trivially HX measurable
when g is B(Rn)-measurable and X is HX-measurable.
(=⇒:) Here, we follow a similar procedure of defining Lebesgue integrals in measure theory, that is, starting
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from simple functions, then extending to positive functions, and eventually extend to all function as a sum
of positive and negative parts.

1. First, suppose that Y is a simple function, we have:

Y = Yn :=
n

∑
i=1

yi · 1Ai for disjoint {Ai} ⊂ HX = X−1(B(Rn)
)
.

Let Bi = X(Ai), we know that Bi ∈ B(Rn) since Ai is in the preimage of a Borel set, so we can define
the function:

gn :=
n

∑
i=1

yi · 1Bi ,

so that gn suits the requirement for any simple function.

2. Then, assume that Y ≥ 0. Recall that simple functions are dense, there exists a non-decreasing
sequence of simple functions {Yn}∞

n=1 such that Yn ↗ Y. By the first step, we have Yn = gn ◦ X, and
we may define:

g(x) = sup
n≥1

gn(x),

which exists on Rn and is measurable by convergence of monotone subsets, hence gn(X) → g(X)

and g satisfies that Y = g ◦ X.

3. Eventually, consider Y = Y+ −Y−, where Y+ and Y− are measurable and non-negative.
By the previous step, we have Y+ = g+ ◦ X and Y− = g− ◦ X with measurable functions g+ and g−,
so Y = g ◦ X where g = g+ − g−.

Therefore, we finish the proof of the equivalent statement.

Definition II.2.4. Distribution.

Let (Ω,F , P) be the probability space with random variable X. Every X induces a probability measure on
Rn defined by:

µ(B) = P
(
X−1(B)

)
,

where µX is called the distribution of X. ⌟

Example II.2.5. Normal Distribution.

Consider X as a normal random variable X : (Ω,F , P)→
(
R,B(R),L

)
.

Graphically, we may distinguish the density function (ρX) and the cumulative density (µX): We can think
of our Gaussian curve of ∆Bt ∼ N (0, ∆t) as:

∆Bt

Figure II.4. Probability density function (blue) and cumulative density function (red) of N (0, 1).
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Here, we consider the density function as ρX(x) as the density, the distribution would be induced over
(R,B(R), µX) that is:

µX
(
(−∞, x)

)
=
∫ x

−∞
ρX(y)dy,

and for any Borel set B ∈ B(X), we have µX(B) =
∫

B ρX(x)dx. ⌟

With these basics about probability, we may define more concepts related to probability.

Definition II.2.6. Expectation.

If
∫

Ω

∣∣X(ω)
∣∣dP(ω) < ∞ (integrable), then:

E[X] :=
∫

Ω
X(ω)dP(ω) =

∫
Rn

xdµX(x) =
∫

Rn
xρX(x)dx.

This is called the expectation of X with respect to P. ⌟

More generally, if f : Rn → R is Borel measurable and
∫

Ω

∣∣ f (x(ω)
)∣∣dP(ω) < ∞, then:

E
[

f (x)
]
=
∫

Ω
f
(
X(ω)

)
dP(ω) =

∫
Rn

f (x)dµX(x).

Definition II.2.7. Lp-norm and Lp-space.

If X : Ω→ Rn is a random variable and p ∈ [1, ∞), we defined the Lp-norm of X (denoted ‖X‖p) as:

‖X‖p = ‖X‖Lp(P) =

(∫
Ω
|X(ω)|pdP(ω)

)1/p
.

The corresponding Lp-space are defined by:

Lp(P) = Lp(Ω) = {X : Ω→ Rn | ‖X‖p < ∞}. ⌟

Other than some definition differences, the Lebesgue measure and probability measure differs in the def-
inition of independence.

Definition II.2.8. Independence.

Two subsets A, B ∈ F are called independent if P(A ∩ B) = P(A)P(B).
A collection of A := {Hi : i ∈ I} of families Hi of measurable sets is independent if:

P(Hi1 ∩ · · ·Hik ) = P(Hi1) · · ·P(Hik )

for all choices Hi1 ∈ Hi1 , · · · , Hik ∈ Hik with different indices i1, · · · , ik.
A collection of random variables {Xi}i∈I is independent if the collection of HXi is independent. ⌟
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Remark II.2.9. If X, Y : Ω → R are independent, then E[XY] = E[X]E[Y] provided that ‖X‖1 < ∞ and
‖Y‖1 < ∞. ⌟

Remark II.2.10. With independence, suppose that P(B) > 0, then we have:

P(A) =
P(A ∩ B)

P(B)
= P(A | B),

which is the conditional probability. Hence, any information about B gives no clue on what A is. ⌟

II.3 Stochastic Process

Definition II.3.1. Stochastic Process.

A stochastic process is a parametrized collection of random variables:

{Xt}t∈T . ⌟

Note that we can have T = Z+, then we have X1, X2, · · · .
We can also have T = [0, 1], which is over a uncountable set of indices.

Remark II.3.2. The parametric space T is usually the half-line [0, ∞). We sometimes may also use [a, b]
or Z+. Then, for each fixed t ∈ T, we have a random variables:

ω 7→ Xt(ω), for any ω ∈ Ω.

For each fixed ω ∈ Ω, we can consider the function:

t 7→ Xt(ω), for any t ∈ T .

Also, when nothing is fixed, we can consider the multivariable function:

(t, ω) 7→ Xt(ω) =: X(t, ω), for any (t, ω) ∈ T ×Ω. ⌟

Remark II.3.3. Cylinderical Sets.

The σ-algebra F will contain the σ-algebra B generated by sets of the form:

{ω : ω(ti) ∈ Fi, where i ∈ I and Fi ∈ Rn are Borel sets}. ⌟

Consider the Brownian motions, say:
Ω̃ = RT = R[0,1].

We note that [0, 1] is an uncountable set, so we want to have some I = {1, 2, · · · }, which is countable, or
even finite.
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Remark II.3.4. Note that it is hard to observe a uncountably infinite set for Brownian motion. The
common strategy to use is to consider a countable (or finite) subset of the domain and observe if the
Brownian motion falls into the designated area for each value in the observed subset of the domain. In
particular, we enforce the designated area to be a Borel set. ⌟

Definition II.3.5. Finite Dimensional Distribution.

The finite dimensional distribution of the process X = {Xt}t∈T are the µt1,··· ,tk defined on (Rn)k, for
k = 1, 2, · · · by:

µt1,··· ,tk (F1 × · · · × Fk) = P
[
Xt1 ∈ F1, · · · , Xtn ∈ Fk

]
for ti ∈ T , and F1, · · · , Fk ∈ B(Rn). ⌟

Theorem II.3.6. Kolmogorov’s Extension Theorem.

For all t1, · · · , tk ∈ T , where k ∈ N, let Vt1,··· ,tk be the probability measure on (Rn)k such that:

(K1) Vtσ(1) ,··· ,tσ(k)(F1 × · · · × Fk) = Vt1,··· ,tk (Fσ−1(1) × · · · × Fσ−1(k)), and

(K2) Vt1,··· ,tk (F1 × · · · × Fk) = Vt1,··· ,tk ,tk+1,··· ,tk+m(F1 × · · · × Fk ×Rn × · · · ×Rn︸ ︷︷ ︸
m

).

Then there exists a probability measure (Ω,F , P) and stochastic process {Xt}t∈T on Ω, where Xt : Ω →
Rn such that:

Vt1,··· ,tk (F1 × · · · × Fk) = P(Xt1 ∈ F1, · · · , Xtk ∈ Fk) for t1, · · · , tk ∈ T and F1, · · · , Fk ∈ B(Rn).

This theorem makes sure that a finite distribution would coincide with the probability distribution, so it
is an important remark on SDEs. The proof of the theorem is omitted due to its high complexity.

II.4 Convergence of Probability Measure and Random Variables

Setup II.4.1. For this section, we set down a measure space
(
E,B(E)

)
, where E is a topology and B(E) is

the σ-algebra over E. ⌟

Definition II.4.2. Weak Convergence.

Let {µn}n∈N+ be a sequence of finite measures on
(
E,B(E)

)
, it converges weakly to µ if for every contin-

uous bounded function f : E→ R:

lim
n→∞

∫
f dµn =

∫
f dµ.

⌟
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Setup II.4.3. Let {Xn}n∈N+ be a sequence, where Xn are random variables on (Ω,F , P), taking values in(
E,B(E)

)
. ⌟

Definition II.4.4. Almost Surely Convergence.

Consider {Xn}n∈N+ , Xn converges to X almost surely, denoted by Xn
a.s.−−→ X if there exists a negligible

event N ∈ F such that P(N) = 0 in which :

lim
n→∞

Xn(ω) = X(ω) for every ω ∈ Ω \N. ⌟

Definition II.4.5. Convergence in Probability.

Consider {Xn}n∈N+ , it converges to X in probability, denoted by Xn
P−−→ X if for all δ > 0:

lim
n→∞

P
(
d(Xn, X) > δ

)
= 0. ⌟

Note that convergence almost surely is a stronger conclusion than convergence in probability, since we
have δ > 0 fixed for convergence in probability and that is not free over convergence almost surely.

Definition II.4.6. Lp-Convergence.

Consider {Xn}n∈N+ , and E = Rn, it converges to X in Lp, denoted by Xn
Lp
−−→ X if X ∈ Lp and:

lim
n→∞

E[|Xn − X|p] = 0. ⌟

Definition II.4.7. Convregence in Law.

Consider {Xn}n∈N+ , it converges to X in Law, denoted Xn
L−−→ X as µn

w−−→ µ, where µn is a distribution
of Xn and µ is the distribution of X. ⌟

Proposition II.4.8. Relationship of Convergences.

LP A.S.

P

L

implies

implies

implies

∃ subset

When L converges to constant

The deduction of the above relationships are omitted, while some of them are parallel to convergence of
sequences of functions.



SDEs. II PROBABILITY THEORY 13

Example II.4.9. Construction of Stochastic Process.

Consider Xn = {Z,−Z, Z,−Z, · · · } where Z ∼ N (0, 1), then:

• X L−−→ X ∼ N (0, 1) since we have µn having the distribution N (0, 1).

• Xn
P−−→ n is not true. Suppose for all δ that P

(
d(Xn, X) > δ

)
= 0, then {Xn} must be Cauchy, then

we must have:
P(|X2k+1 − X2k| > δ) = P(|Z| > δ/2) > 0,

which is a contradiction. ⌟

Proposition II.4.10. Borel-Cantelli Lemma.

Let {An}n∈N+ be a sequence of sets, and:

A = lim sup
n→∞

An =
∞⋃

n=1

⋃
k≥n

Ak,

then:

1. Suppose ∑∞
n=1 P(An) < ∞, if P(A) = 0, then we

2. (0-1 Law) If ∑∞
n=1 P(An) = +∞, and {An}n are independent, then P(A) = 1.

Then, we will recall the three fundamental convergence theorems in Real Analysis.

Theorem II.4.11. Convergence Theorems in Real Analysis.

The following convergence theorems holds over (Ω,F , P):

• (Fatous’s Lemma). If Xn ≥ 0, then E[lim inf Xn] ≤ lim inf E[Xn].

• (Monotone Convergence Theorem, MCT). If Xn ↗ X, then limn→∞ E[Xn] = E[limn→∞ Xn].

• (Lebesgue’s Dominant Convergence Theorem, DCT). If Xn
P−−→ X, |Xm| ≤ Y, and E[|Y|] < ∞, then

limn→∞ E[Xn] = E[limn→∞ Xn] = E[X].

These proofs aligns with the proof of the convergences in Real Analysis, please refer to any measure the-
ory textbook for a parallel proof.

Remark II.4.12. Discrete and Continuous time Stochastic Process.

A discrete time stochastic process is {Xn}n∈Z+ , and a continuous time stochastic process is {Xt}t∈[0,∞]. ⌟
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After the construction of a countable (or finite) number of observation points, we would want to develop
a finite dimensional distribution:

µt1,··· ,tk (F1 × F2 × · · · × Fk) = P[Xt1 , · · · , Xtk ].

II.5 Normal Random Variable

One goal of normal random variable is towards the Brownian motion, which was developed in 1827 from
R. Brown of the “rapid oscillatory motion.”

Remark II.5.1. Sketch on Brownian Motion.

Let F1, · · · , Fk be Borel sets in Rn, we have the Brownian motion measured by:

µt1,··· ,tk (F1, · · · , Fk) = P[Bt1 ∈ F1, · · · , Btk ∈ Fk].

Here, in particular, let t1 = 0 and t2 = t, we have:

µ0,t = µt = P(bt ∈ F1),

and when t1 = 0, t2 = s, and t3 = t, we have:

µ0,s,t = µs,t = P(Bs ∈ F1, Bt ∈ F2) = P(Bs ∈ F2) ·P(Bt ∈ F1 | Bs ∈ F2),

by the Markov property. ⌟

In 1900, there are motions used to detect stock price fluctuations.
In 1905, Einstein derived the transition density for:

P[Bt ∈ F] ∼ N .

In 1923, Wiener rigorously defined the math over (C[0, 1],B
(
C[0, 1]

)
, P), i.e., infinite dimensional space.

In 1933, Kolmogrov developed the extension theory.
In 1960s, L. Gross defined the Abstract Wiener Space of (H, B, P), which is over the a Hilbert space.

Definition II.5.2. 1-dimensional Normal Random Variable.

Let the probability space be (Ω,F , P), X : Ω→ R is normal if the distribution of X has density:

ρX(x) =
1

σ
√

2π
exp

(
− (x−m)2

2σ2

)
,

where m is the mean and σ2 is the variance. Meanwhile, the probability is:

P(X ∈ G) =
∫

G
ρx(x)dx for all Borel sets G ∈ R. ⌟
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It is noted that this is a distribution since
∫

R
ρx(x)dx = 1.

Definition II.5.3. n-dimensional Normal Random Variable.

Let the probability space be (Ω,F , P), with X : Ω→ Rn, it is multi-normal N (m, C) if the distribution of
X has density of the form:

ρX(x1, · · · , xn) =

√
|A|

(2π)n/2 exp
(
− 1

2 ∑
j,k
(xj −mj)aj,k(xk −mk)

)
,

where m = (m1, · · · , mn) ∈ Rn and C−1 = A =
[

aj,k

]
∈ Rn×n is a symmetric positive definite matrix. ⌟

Definition II.5.4. Characteristic Function.

Consider the random variable X : Ω→ Rn, we let the characteristic function ϕX : Rn → C be defined as:

ϕX(u1, u2, · · · , un) = E
[

exp{i(u1x1 + · · ·+ unxn)}
]
=
∫

Rn
ei〈u,x〉 P(x ∈ dX)︸ ︷︷ ︸

ρX(x)dx if the density exists

. ⌟

Remark II.5.5. The characteristic function is the Fourier transformation of X with measure P[X ∈ dx]. ⌟

Then, we will give a few properties of the normal distributions and characteristic functions.

Theorem II.5.6. Unique Determination of Distribution.

ϕX determine the distribution of X uniquely.

Theorem II.5.7. Characteristic Function for Normal Distribution.

If X : Ω→ Rn is normal N (m, C), then:

ϕX(u1, · · · , un) = exp
(
− 1

2 ∑
j,k
(xj −mj)aj,k(xk −mk)

)
for all u1, · · · , un ∈ R.

Theorem II.5.8. Equivalence under Sequence of Random Variables.

Let Xj : Ω → R be random variables for 1 ≤ j ≤ n, then X = (X1, · · · , Xn) is normal if and only if
Y = λ1X1 + · · ·+ λnXn for all λ1, · · · , λn ∈ R.

Proof. (=⇒:) Suppose Xj is normal for all 1 ≤ j ≤ n, then:

E

[
exp

(
iu

n

∑
j=1

λjXj

)]
= exp

[
− 1

2 ∑
j,k

uλjcj,kuλk + i ∑
j

uλjmj

]
= exp

[
− u2

2 ∑
j,k

λjcj,kλk + iu ∑
j

λjmj

]
.

Therefore, Y is normal with E[Y] = ∑j λjmj and Var[Y] = ∑j,k λjcj,kλk.
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(⇐=:) If Y = ∑n
j=1 λjmj is normal with E[Y] = m and Var[Y] = σ2, then:

E

[
exp

(
iu

n

∑
j=1

λjxj

)]
= exp

(
−1

2
u2σ2 + i ∑

)
,

where m = ∑j λjmj for mj = E[Xj] and σ2 = E

[(
∑j λjXj −∑j λjmj

)2
]
= ∑j,k λjλkE[(xj −mj)(Xk −mk)].

Since mj’s are arbitrary, then X is normal.

Theorem II.5.9. Uncorrelated =⇒ Independent for Normal Distributions.

Let Y0, Y1, · · · , Yn be real random variables on Ω. Assume X = (Y0, · · · , Yn) is normal and Y0 and Yj are
uncorrelated for all j ≥ 1, i.e.:

E[(Y0 −E[Y0])(Yj −E[Yj])] = 0 for 1 ≤ j ≤ n.

Then Y0 is independent of {Y1, · · · , Yn}.

The idea to prove the above theorem is by using the characteristic function, and obtain that:

ϕX(u1, u2, · · · , un) = ϕX(u1) · ϕX(u2) · · · ϕX(un),

which is the definition of independence.

Remark II.5.10. Note that independence implies uncorrelated for all random variable, so we have them
equivalent with normal distributions. ⌟

Theorem II.5.11. Convergent Sequence of Normal Distribution Converges to Normal Distribution.

Suppose Xk : Ω→ Rn is normal for all k and that Xk → X in L2(Ω), i.e.:

E[|Xk − X|2]→ 0 as k→ ∞.

Then X is normal.

Proof. First, note that
∣∣ei〈u,x〉 − ei〈u,y〉∣∣ < |u| · |x− y|, we have:

E[
∣∣ei〈u,x〉 − ei〈u,y〉∣∣2] ≤ |u|2 ·E[|Xk − X|2]→ 0 as k→ ∞.

Thus, we have:
E[ei〈u,x〉]→ E[ei〈u,y〉] as k→ ∞.

Therefore, X is normal with mean E[X] = limk→∞ E[Xk] and covariance C =
[

xj,n

]
= limk→∞ Ck.
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Remark II.5.12. To develop the Brownian motion, we consider the independence, we will have:

νt1,··· ,tk (F1, · · · , Fk) =
∫

F1×···×Fk

ρX(x1, · · · , xk)dx1dx2 · · · dxk

=
∫

F1×···×Fk

ρt1(x1)ρt2−t1(x2 − x1) · · · ρtk−tk−1(xk − xk−1)dx1dx2 · · · dxk,

where we interpret the distributions are all normal distributions. ⌟

II.6 Brownian Motion

For simplicity, we first reduce the Brownian Motion to 1-dimensional case.

t

Bt

F1

F2

F3

t1 t2 t3

Figure II.5. Illustration of Brownian Motion in 1D.

Now, consider for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, we define:

νt1,··· ,tk (F1 × · · · × Fk) =
∫

F1×···×Fk

ρ(t1, x0, x1)ρ(t2 − t1, x1, x2) · · · ρ(tk − tk−1, xk−1, xk)dx1 · · · dxj.

Here, the transition density is for all x, y ∈ Rn, t > 0 that:

ρ(t, x, y) = ρ(t, x− y) = (2πt)−n/2 exp
(
−|x− y|2

2t

)
,

and for example n = 1, we have:

ρ(t2 − t1, x1, x2) =
1√

2π(t2 − t1)
exp

[
−|x1 − x2|2

2(t2 − t1)

]
.

Note that this definition is based of Theorem II.3.6 Kolmogrov’s extension theorem so we make a finite
dimensional probability distribution into a continuous distribution.

Definition II.6.1. Brownian Motion.

The above processes is called (a version of) Brownian motion starting at x. ⌟
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Proposition II.6.2. Properties of Brownian Motion.

Here are some basic properties of Brownian motion:

1. Bt is a Gaussian process, i.e., for all 0 ≤ t1 ≤ · · · ≤ tk, the random variable Z = (Bt1 , · · · , Btk ) ∈ Rnk

is a multi-normal distribution.

2. Bt has independent increments, i.e.:

Bt1 , Bt2 − Bt1 , · · · , Btk − Btk−1 are independent, i.e., PX,Y(x, y) = PX(x)PY(y).

3. t 7→ Bt(ω) is continuous for almost all ω ∈ Ω.

Remark II.6.3. We only consider continuous versions of Brownian motion. ⌟

Theorem II.6.4. Kolmogrov’s Continuity Theorem.

Suppose that the process X = {Xt}t≥0 satisfies that for all T > 0, there exists α, β, D such that:

E[|Xt − Xs|α] ≤ D · |t− s|1+β for 0 ≤ s, t ≤ T.

Then there exists a continuous version of X.

For example, with Brownian motion, we have:

E[|Bt − Bs|4] = n(n + 2)|t− s|2,

then we have α = 4, β = 1, and D = n(n + 2), so Brownian motion has a continuous version.

Remark II.6.5. Here, we have the Brownian motion continuous almost everywhere, i.e., except for a set of
probability zero, but the Kolmogrov’s Continuity theorem ensures that there exists a continuous version
everywhere. ⌟

Remark II.6.6. Gaussian/Markov Definition of Brownian Motion.

A real-valued stochastic process ω(·) is called 1-dimensional standard Brownian motion if:

1. B0 = 0,

2. Bt − Bs ∼ N (0, t− s), i.e., P(t− s, x) is normal, and

3. For any 0 < t1 < · · · < tk, we have:

Bt1 , Bt2 − Bt1 , · · · , Btk − Btk−1 are independent, i.e., PX,Y(x, y) = PX(x)PY(y).

There is another definition using Martingale definition. ⌟
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Then, we will talk about filtration.

Definition II.6.7. Filtration.

Let Bt(ω) be n-dimensional Brownian motion, then we define Ft = F (n)
t to be the σ-algebra generated by

the random variables {Bi(s)}1≤i≤n
0≤s≤t

. ⌟

Namely, Ft is the smallest σ-algebra containing all the sets of the form:

{ω : Bt1(ω) ∈ F1, · · · , Btk (ω) ∈ Fk},

where tj ≤ t and all Fi ⊂ Rn are Borel sets.

Remark II.6.8.

• The filtration only concerns the behavior of the Brownian motion before time t, which can be inter-
preted as the “history of Brownian motion up to time t.”

• A random function h is Ft-measurable if and only if h can be written as the almost surely limit of
sums of functions of the form g1(Bt1), · · · , gk(Btk ).

• Hence, we have h1(ω) = Bt/2(ω) Ft-measurable but h2(ω) = B2t(ω) being not Ft-measurable. ⌟

Definition II.6.9. Adapated Models.

Let {Nt}t≥0 be an increasing family of σ-algebras. A process g(t, ω) : [0, ∞)×Ω → Rn is Nt-adapted if
for all t > 0, the function ω 7→ g(t, ω) is Nt-measurable. ⌟

Example II.6.10. Discrete Stochastic Process in Stock Market.

Consider the model for trading in stock market, t = 1, 2, · · · . At each time, the price can go up by factor u
or go down by factor d.
Hence, the sample space is:

Ω = {ω1 = (u, u), ω2 = (u, d), ω3 = (d, u), ω4 = (d, d)}.

Take an event A = {ω1, ω2} means the stock goes up at t = 1. There, the σ-algebra generated is:

F1 = {∅, A, Ac, Ω}.

Note that the biggest σ-algebra is the power set, namely F2 = P(Ω).
Now, consider two functions:

X(ω1) = X(ω2) = 1.5 and X(ω3) = X(ω4) = 0.5, with

Y(ω1) = 2, Y(ω2) = Y(ω3) = 0.75, and Y(ω4) = 0.25.

Then X is F1-measurable, since have the preimage of a (at most) countable image has each discrete
preimage measurable.
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Y is not F1-measurable, but it is F2-measurable. ⌟

Then, we consider some path properties of Brownian motion.

Proposition II.6.11. Path Properties of Brownian motion.

Let {Bt} be a sequence of Brownian motion.

1. {Bt} has a continuous version, so it is C0.

2. {Bt} is nowhere differentiable, that is, dBt
dt = ∞ a.s., so it is not C1.

3. {Bt} is Cγ, where γ ≤ 1
2 − ϵ for all ϵ > 0, that is, E[|dBt|2] = dt.

By Proposition II.6.11, we may consider Bt having Hölder index of 1/2.

II.7 Conditional Expectation

First, we shall consider the conditional probability.

Definition II.7.1. Conditional Probability.

Given the probability space (Ω,F , P), with A, B ∈ F we have the probability of A given B defined as:

P(A | B) =
P(A ∩ B)

P(B)
for P(B) 6= 0. ⌟

Remark II.7.2. We say A and B are independent of P(A ∩ B) = P(A)P(B)}, and a direct consequence is:

P(A | B) =
P(A)P(B)

P(B)
= P(A). ⌟

Then, our goal is to define the conditional expectations on two random variables.

Example II.7.3. A Case with Random Variable.

We consider a random variable such that Y = ∑n
i=1 ai1Ai (Step function), which means:

Y =



a1 on A1,

a2 on A2,
...

am on Am.

In particular, ai’s are distinct and Ai’s are mutually disjoint.
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Then, for any X, we may define the conditional expectation as:

E[X | Y] =



1
P(A1)

∫
A1

XdP on A1,

1
P(A2)

∫
A2

XdP on A2,

...

1
P(An)

∫
An

XdP on An.

In fact, we have E[X | Y] is a random variable on Y, i.e., it is HY-measurable, meaning that there exists a
measure h such that h(Y) = E[X | Y].
Now, consider any measurable A ∈ HY (while it can intersect any Ai’s), then we have:∫

A
XdP =

∫
A

E[X | Y]dP. ⌟

Then, we formally define the conditional expectation.

Definition II.7.4. Conditional Expectation.

The conditional expectation of X given Y is any HY -measurable random variable Z such that:∫
A

XdP =
∫

A
ZdP for all A ∈ HY,

and we denote Z = E[X | Y] = E[X | HY]. ⌟

Theorem II.7.5. Existence and Uniqueness of Conditional Expectation.

Let X be integrable random variable, then for each σ-algebra H ⊂ F , the conditional expectation E[X | H]

exists and is unique up to probability zero.

Now, we consider certain properties with conditional expectation.

Proposition II.7.6. Properties of Conditional Expectation.

Let X, Y be random variable and λ be a constant.

1. Linearity. E[λ · X + Y] = λE[X] + E[Y].

2. Order. E
[
E[X | H]

]
= E[X].

3. Homogeneity. E[YX | H] = YE[X | H] if Y is H-measurable.

4. Independence. E[X | H] = E[X] if X is independent of H.

5. Towering. E[X | G ] = E[E[X | H] | G ] if G ⊂ H.
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Another important property is:

Theorem II.7.7. Jensen’s Inequality.

If Φ : R → R is convex, and E[|Φ(X)|] < ∞, then:

Φ
(
E[X | H]

)
≤ E[Φ(X) | H].

This leads to the following consequences from the above theorem:

Corollary II.7.8. Consequences of Jensen’s Inequality.

• (Cauchy Schwartz). |E[X | H]| ≤ E[|X| | H] and |E[X | H]|2 ≤ E[|X|2 | H].

• (L2 Convergence). If Xn
L2
−−→ X, then E[Xn | H]

L2
−−→ E[X | H].

II.8 Martingale

Definition II.8.1. Discrete Martingale.

Let {Xj}∞
j=1 be random variables such that E[|Xj|] < ∞. The the sequence {Xj}∞

j=1 is discrete martingale
if Xk = E[Xj | X1, · · · , Xk] = E[Xj | Fk] a.s. for all j ≥ k. ⌟

Martingale attempts to predict the future with present data. The average prediction of future is the present.

Remark II.8.2. Sometimes, we denote X1, · · · , Xk in the conditional expectation as the σ-algebra generated
by the sequence up to k, namely, σ

(
{Xi}i=1 Ak) = Nk. ⌟

Definition II.8.3. Continuous Martingale.

Let X(·) be a real-valued stochastic process and Ft = σ{X(s) : 0 ≤ s ≤ t}. If E[|X(t)|] < ∞ and
X(s) = E[X(t) | Fs] for all t ≥ s ≥ 0, then X(·) is called Martingale. ⌟

Definition II.8.4. Uniform Integrable.

On (X, Ω, P), a family { f j}j∈J of real, measurable functions f j on Ω is uniform integrable if:

lim
m→∞

sup
j∈J

{∫
| f j |≥m

| f j|dP

}
= 0.

⌟

Then, we consider the test function for an increasing, convex function.
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Definition II.8.5. Uniformly Integrable Test Function.

A function ψ : [0, ∞) → [0, ∞) is uniformly integrable test function if ψ is increasing, convex, and
limx→∞

ψ(x)
x = ∞. ⌟

For example we may have ψ(x) = |x|1+ϵ for all ϵ > 0 as a uniformly integrable test function.

Theorem II.8.6. Uniform Integrability and Test Function.

The family { f j}j∈J is uniformly integrable if and only if there exists a uniform integrable test function
such that supj∈J {

∫
ψ(| fi|)dP} < ∞.

Hence, we have uniformly integrable as a stronger condition than just integrability.

Theorem II.8.7. Ultimate Generalization of Convergence Theorem.

Suppose { fk}∞
k=1 is a sequence of random variables on (Ω,F , P) such that:

lim
k→∞

fk(ω) = f (ω) for a.a. ω.

Then, the following are equivalences:

1. { fn}∞
n=1 is uniformly integrable.

2. f ∈ L1(P) and fn
L1
−−→ f .

Remark II.8.8. Note that uniformly integrable a.s. implies L1 convergence, and Theorem II.4.11(3)
dominated convergence theorem is a special case of the above equivalence. ⌟

Corollary II.8.9. Consequences of Ultimate Generalization.

• Let {Mk}∞
k=1 be a discrete martingale and assume that supk E[|Xk|p] < ∞ for p > 1, then there exists

M ∈ L1(P) such that Mk
L1
←−−→

a.s.
M.

• Let X ∈ Lp(P), where p ≥ 1 and {Nk} be an increasing family of σ-algebras, where N∞ =

σ
(
{Nk}∞

k=1
)
, then:

Mk := E[X | Nk]
Lp
←−−→

a.s.
M := E [X | N∞].

Here, we have uniform integrable {Mk} if and only if Mk = R[X | Fn] for some X and {Fn}.
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III Stochastic Integration

III.1 Itô Integral

Recall our model as:
dN
dt

=
(
γ(t) + noise

)
N(t),

where we impose the generalization that:

dxt = b(t, xt)dt + σ(t, xt)dwt. (fcn.1)

Remark III.1.1. An issue here is that dwt is ill-posed, since {wt} is nowhere differentiable a.s. ⌟

However, we may consider the model on [0, T], and we select 0 = t0 < t1 < · · · < tm = t, and consider a
discrete version, so we have:

dxt = xk+1 − xk,

where xi := xti , and thus our model becomes:

xk+1 − xk = b(tk, xk)(tk+1 − tk) + σ(tk, xk)(wtk+1 − wtk ). (fcn.2)

Remark III.1.2. The selection of b(tk, xk) and σ(tk, xk) in (fcn.2) is the Itô integral, whereas replacing them
with b(tk, xk) and σ(t(k+1/2, xk+1/2) is the Stratonovich integral.
The Itô integral gives you a Martingale, whereas Stratonovich is more related to physics cases. ⌟

If we consider it as a sum, we have:

xk = x0 +
k−1

∑
j=0

b(tj, xj)∆tj +
k−1

∑
j=0

σ(tj, xj)∆Bj.

In this case, we can define itô integral as ∆t→ 0:

Definition III.1.3. Itô Integral.

For the above model of SDEs, we may write the ill-defined (fcn.1) in the integral form, namely as:

xt = x0 +
∫ t

0
b(s, xs)ds +

∫ t

0
σ(s, xs)dws. ⌟

Note that here,
∫ t

0 σ(s, xs)dws is a random variables, and xs would contribute as a random variable.

Now, our goal is clear, we want to define:

ϕ(t, ω) = σ
(
t, xt(ω)

)
,

and we want to define the integral: ∫ T

S
ϕ(t, ω)dBt(ω).
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To use a discrete version, we have:

ϕ(t, ω) = ∑
i≥0

ej(ω) · 1[j/2n ,(j+1)/2n ](t).

Note that we may define this over [0, 1], and we then can scale it into [S, T] interval.

Here, we may borrow ideas from the method of separation as:

f (x, y) =
∞

∑
k=0

gk(x)hk(y).

Hence, we have: ∫ T

S
ϕ(t, ω)dBt(ω) = ∑

j≥0
ej(ω)(Btj−1 , Btj).

Setup III.1.4. Here, we would let S = 0 and T = 1 for the simplicity of cases, that is:

tk =
k

2n for 0 ≤ k
2n ≤ 1.

Otherwise, we set the value to be S on the left of 0 and T on the right of 1. ⌟

Example III.1.5. Itô and Stratonovich of Brownian Motion are Different.

We choose:
ϕ1(t, ω) = ∑

j≥0
Bj/2n(ω)1[j/2n ,(j+1)/2n ](t).

Then, we have the expectation as:

E

[∫ 1

0
ϕ1(t, ω)dBt(ω)

]
= ∑

j≥0
E
[
Bj/2n(B(j+1)/2n − Bj/2n)

]
= 0,

by independence.
On the other hand, if we choose:

ϕ2(t, ω) = ∑
j≥0

B(j+1)/2n(ω)1[j/2n ,(j+1)/2n ](t).

Then, we have the expectation as:

E

[∫ 1

0
ϕ1(t, ω)dBt(ω)

]
= ∑

j≥0
E
[
B(j+1)/2n(B(j+1)/2n − Bj/2n)

]
= ∑

j≥0
E
[
(B(j+1)/2n − Bj/2n)(B(j+1)/2n − Bj/2n) + Bj/2n(B(j+1)/2n − Bj/2n)

]
= ∑

j≥0
∆tj = 1.

Here, we can note that the results of two constructions are different. ⌟

Remark III.1.6. Location of Reference Matters.

The Itô integral selects tj to be the left hand side, and Stratonovich selects tj as the middle points. There
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results are not the same, like Riemann or Lebesgue integrals. ⌟

Setup III.1.7. Suppose g : [0, T] → R is a continuous, differentiable function with g(0) = g(1) = 0, we
define: ∫ 1

0
gdBt = −

∫ 1

0
g′Btdt.

Through integration by parts, we have:

∫ 1

0
gdBt = gtBt

∣∣∣∣t=1

t=0
−
∫ 1

0
Btg′dt,

a.s. This is the Paley-Wiener-Zygmund Integral. ⌟

Proposition III.1.8. Properties with Paley-Wiener-Zygmund Integral.

Here, we consider that:

E

[∫ 1

0
gtdBt

]
= 0,

and we have Itô isometry:

E

[(∫ 1

0
gtdBt

)2
]
=
∫ 1

0
g2dt.

Proof. For the first expectation, we may use Fubinni as:

E

[∫ 1

0
gtdBt

]
= E

[
−
∫ 1

0
g′tBtdt

]
= −

∫ 1

0
g′tE[Bt]dt = 0.

For the second expectation, since g is deterministic, we have:

E

[(∫ 1

0
gtdBt

)2
]
= E

[(∫ 1

0
g′tBtdt

)2
]
= E

[∫ 1

0
g′tBtdt

∫ 1

0
g′sBsds

]
= E

[∫ 1

0

∫ 1

0
g′tg
′
sBtBsdtds

]
=
∫ 1

0

∫ 1

0
g′tg
′
sE[BtBs]dtds

=
∫ 1

0

∫ 1

0
g′tg
′
s min(s, t)dtds =

∫ 1

0

[∫ t

0
g′ssds +

∫ 1

t
g′stds

]
dt

=
∫ 1

0
g′t

(
−
∫ t

0
gsds

)
dt =

∫ 1

0
g2

t dt,

which completes the proof.

Extending the definition to g ∈ L2([0, 1]), we may select a sequence of C1 functions gn with gn(0) =

gn(1) = 0 such that: ∫ 1

0
|gn − g|2dt→ 0.

A specific example is the Fourier series.
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By its convergence, it is Cauchy, we have:

E

[∣∣∣∣∫ 1

0
gmdBt −

∫ 1

0
gmdBt

∣∣∣∣2
]
=
∫ 1

0
|gm − gn|2dt.

Hence, {
∫ 1

0 gmdBt}∞
m=1 is Cauchy in L2(Ω, P), so we have:

∫ 1

0
gdBt = lim

n→∞

∫
gmdBt in L2.

III.2 Measurability for Itô Integrals

Definition III.2.1. Filtration.

A filtration Ft is the σ-algebra generated by {Bs}0≤s≤t. ⌟

Definition III.2.2. Nt-adapted Process.

Let {Nt}t≥0 be an increasing family of σ-algebra. A process g(t, ω) : [0, ∞)×Ω→ R is called Nt-adapted
if for all t > 0 that ω 7→ g(t, ω) is Nt-measurable. ⌟

Definition III.2.3. Nt-measurable Class.

Let V = V [0, 1] (or equivalently V [S, T]) be the class of functions f (t, ω) : (0, ∞)×Ω→ R that satisfied:

1. (t, ω) 7→ f (t, ω) is B ×F measurable, where B is the Borel σ-algebra.

2. f (t, ω) is Ft-adapted, where Ft = σ({Bs}s<t).

3. E[
∫ T

S | f (t, ω)|2dt] < ∞. ⌟

Then, we want to define
∫ 1

0 f (t, ω)dBt(ω) = I [F](ω). Assume that f ∈ V has the form:

f (t, ω) = ∑
j≥0

ej(ω)1[tj ,tj+1)
(t),

so we have:
I [ f ](ω) = ∑

j≥0
ej(ω)

(
Btj+1(ω)− Btj(ω)

)
.

Corollary III.2.4. Itô Isometry.

If ϕ(t, ω) is bounded and elementary, then:

E

[∣∣∣∣∫ 1

0
ϕ(t, ω)

∣∣∣∣2
]
= E

[∫ 1

0
|ϕ(t, ω)|2dt

]
.
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Proof. Here, we denote ∆Bj = Btj+1 − Btj , then

E[eiej∆Bi∆Bj] =

0, when i 6= j,

E[e2
j ](tj+1 − tj), if i = j.

Thus, we have:

E

[∣∣∣∣∫ 1

0
ϕ(t, ω)

∣∣∣∣2
]
= ∑

i,j
E[e2

j ](tj+1 − tj) = ∑
i

E[e2
i ](ti+1 − ti)

= E

[∫ 1

0
|ϕ(t, ω)|2dt

]
.

Now, we want to use the isometry to extend definition from elementary functions to functions in class V .

Proposition III.2.5. Approximation to Continuous Class V Functions.

Let g ∈ V be bounded, and g(·, ω) is continuous over each ω, then there exists ϕn ∈ V such that:

E

[∫ 1

0
(g− ϕn)

2dt
]
→ 0 as n→ ∞.

Proof. Let ϕn(t, ω) = ∑j g(tj, ω)1[tj ,tj+1)
(t) ∈ V and:

∫ 1

0
(g− ϕn)

2dt = ∑
j

∫ tj+1

tj

|g(tj, ω)− g(t, ω)|2dt→ 0

by the continuity and bounded convergence.

Proposition III.2.6. Approximation to Bounded Class V Functions.

Let h ∈ V be bounded, then there exists gn ∈ V such that gn(·, ω) is continuous for ω and n and:

E

[∫ 1

0
(h− gn)

2dt
]
→ 0 as n→ ∞.

Proof. Suppose |h(t, ω)| ≤ M for all (t, ω). For each h, let ψn be a nonnegative continuous function on R

such that:

• ψn(x) = 0 for x ≤ −1/n and x ≥ 0, and

•
∫ ∞
−∞ ψ(x)dx = 1.

The above is called a good kernel in Real analysis.
Here, we define that:

gn(t, ω) =
∫ t

0
ψn(t− s)h(s, ω)ds.
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• gn(·, ω) is continuous for each ω a.s., and

• |gn(t, ω)| ≤ M.

Since h ∈ V , we can show that gn(t, ·) is Ft-measurable.

•
∫ 1

0 |gn(s, ω)− h(s, ω)|2ds→ 0 as n→ ∞ for each ω, we have:

• Approximation theory and boundedness that E
[∫ 1

0 |h(t, ω)− gn(t, ω)|2dt
]
→ 0.

Theorem III.2.7. Approximation to Class V Functions.

Let f ∈ V , then there exists a sequence of {hn}∞
n=1 ⊂ V such that hn is bounded for each n and E[

∫ 1
0 | f −

hn|2dt→ 0] as n→ ∞.

Proof. We put hn =


−n, for f < −n,

f (t, ω), for − n ≤ f ≤ n,

n for f > n,

and this function is bounded and converges.

In this case, we can defined: ∫ T

S
fn(t, ω)dBt(ω)

L2(P)−−−→
∫ T

S
f (t, ω)dBt(ω)

Remark III.2.8. We want to define for any f ∈ V of:

I [ f ](ω) =
∫ 1

0
f (t, ω)dBt(ω) for each f ∈ V .

Our path gets from f ∈ V and bounded function, which is from f ∈ V and bounded continuous function,
from f ∈ V and elementary functions, so we think about:

E

[∫ 1

0
|ϕn − f |2dt

]
→ 0,

so we want to define the using the elementary function. ⌟

Example III.2.9. Integration of Brownian Motion.

Consider B0 = 0, then: ∫ t

0
BsdBs =

B2
t

2
+

1
2

t.

fs(ω) = Bs(ω) ∈ V(0, t), and the Riemann integral is:∫ t

0
gsdgs =

1
2

g2
t for g ∈ C1, and g0 = 0. ⌟
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We consider:
ϕn(s, ω) = ∑ Bj(ω)1[tj ,tj+1)

(s),

with Bj = Btj and Fj = Ftj -measurable. Then:

E

[∫ t

0
(ϕ

(s)
n Bs)

2ds
]
= E

[
∑

j

∫ tj+1

tj

(Bj − Bs)
2ds

]

= ∑
j

∫ tj+1

tj

(s− tj)ds =
1
2 ∑

j
(tj+1 − tj)

2 ≤ |∆t|∑
j
(tj+1 − tj)→ 0.

So the integral is: ∫ t

0
BsdBs = lim

∆tj→0

∫ t

0
ϕndBs = lim

∆tj→0
∑

j
Bj∆Bj in : L2(P).

Now:

∆(B2
j ) = B2

j+1 − B2
j = (Bj+1 − Bj)

2 + 2Bj(Bj+1 − Bj) = (∆Bj)
2 + 2Bj∆Bj.

Therefore, we have:
B2

t = ∑
j

∆(Bj)
2 = ∑

j
(∆Bj)

2 + 2Bj∆Bj,

or:

∑ Bj∆Bj =
1
2

B2
t −

1
2 ∑

j
(∆Bj)

2 → 1
2

B2
t −

1
2

t,

as we have:

E

[
∑

j
(∆Bj)

2
]
= ∑

j
E
[
|∆Bj|2

]
= ∑

j
(tj+1 − t) = t.

Theorem III.2.10. Properties with Itô Integral.

Let f , g ∈ V(S, T) and 0 ≤ S < U < T, then:

1.
∫ T

S f dBt =
∫ U

S f dBt +
∫ T

U f dBt a.s.

2.
∫ T

S (c f + g)dBt = c
∫ T

S f dBt +
∫ T

S gdBt, where c is a constant.

3. E
[ ∫ T

S f dBt
]
= 0 and E

[∣∣ ∫ T
S f dBt

∣∣] = ∫ T
S E[| f |2]dt, and

4.
∫ T

S f dBt is Ft-measurable.

Definition III.2.11. Martingale w.r.t. Filtration.

A filtration is a familyM = {Mt}t≥0 of σ-algebra Mt ⊂ F such that 0 ≤ s < t =⇒Ms ⊂ Mt, i.e., {Mt}
is increasing. An n-dimensional stochastic process {Mt}t≥0 on (Ω,F , P) is a martingale with respect to a
filtration {Mt}t≥0 (and with respect to P) if:

1. Mt isMt-measurable for all t,

2. E[|Mt|] < ∞ for all t, and
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3. E[Mt | Ms] = Ms for t ≥ s. ⌟

Example III.2.12. Brownian Motion is Martingle w.r.t. Ft.

Brownian motion is martingale with respect to Ft:

1. Bt is Ft-measurable,

2. (E[|Bt|])2 ≤ E[|Bt|2] = t < ∞, and

3. E[Bt | Fs] = E[Bt − Bs + Bs | Fs] = E[Bt − Bs] + Bs = Bs. ⌟

Theorem III.2.13. Doob’s Martingale Inequality.

If Mt is martingale such that t→ Mt(ω) is continuous a.s., then for all P ≥ 1, T ≥ 0, and λ > 0, we have:

P

[
sup

0≤t≤T
|Mt| ≥ λ

]
≤ 1

λp E[|Mt|p].

Here, we will consider a weaker theorem to prove.

Proposition III.2.14. Discrete Doob’s Martingle Inequality.

If {Xn}∞
n=1 is a discrete martingale, then:

P

{
max

1≤k≤n
Xk ≥ λ

}
≤ 1

λ
E[|Xn|]

(
or

1
λp E[|X|p] for sub-martingale

)
, and

E

[
max

1≤k≤n
|Xk|p

]
≤
(

p
p− 1

)p
E[|Xn|p].

Theorem III.2.15. t-continuous Version of Itô Integral.

Let f ∈ V(0, T), then there exists a t-continuous version of
∫ t

0 f (s, ω)dBs(ω) for 0 ≤ t ≤ T, i.e., there exists
a t-continuous stochastic process Jt on (Ω,F , P) such that:

P

[
Jt =

∫ t

0
f dB

]
= 1 for all t such that 0 ≤ t ≤ T.

Proof. Let ϕn = ϕ(t, ω) = ∑j e(n)j (ω)1
[t(n)j ,t(n)j+1)

(t) such that:

E

[∫ T

0
( f − ϕn)

2dt
]
→ 0 as n→ ∞.
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Put It = In(t, ω) =
∫ t

0 ϕn(s, ω)dBs(ω), thenIn(·, ω) is continuous. Moreover, In(t, ω) is a martingale with
respect to Ft for all s > t:

E[Is(s, ω) | Ft] = E

[∫ t

0
ϕndB +

∫ s

t
ϕndB | Ft

]
=
∫ t

0
ϕndBt + E

[∫ s

t
ϕndB | Ft

]

=
∫ t

0
ϕndBt + E

 ∑
t≤t(n)j ≤t(n)j+1≤s

e(n)j ∆Bj | Ft


=
∫ t

0
ϕndBt + ∑ E

[
E[e(n)j ∆Bj | F

(n)
tj

]︸ ︷︷ ︸
0

| Ft
]
=
∫ t

0
ϕndBt.

Hence, In − Im is also Ft-martingale, so by the martingale inequality, it follows that:

P

[
sup

0≤t≤T
|In(t, ω)− Im(t, ω)| > ϵ

]
≤ 1

ϵ2 E[|In(T, ω)− Im(t, ω)|2] = 1
ϵ2 E

[∫ T

0
(ϕn − ϕm)

2ds
]
→ 0 as m, n→ ∞.

Hence, we can choose a subsequence hk where k↗ ∞ such that:

P

[
sup

0≤t≤T
|Ink+1(t, ω)− Ink (t, ω)| > 2−k

]
≤ 2−k.

Thus, by the Borel-Cantelli lemma, we have:

P[ sup
0≤t≤T

|Ink+1(t, ω)− Ink (t, ω)| > 2−k for infinitely many k] = 0.

Hence, for almost all ω, there exists k1(ω) such that:

sup
0≤t≤T

|Ink+1(t, ω)− Ink (t, ω)| ≤ 2−k for k ≥ k1(ω).

Therefore, Ink (t, ω) is uniform convergent for t ∈ [0, T] for almost all ω. The limit denoted by It(ω) is
t-continuous for almost all ω. However, we also know In(t, ω) → I(t, ω) = It in L2(P), we must have
It = Jt a.s.

Corollary III.2.16. Itô Integral is Martingale.

Let f (t, ω) ∈ V(0, T), then Mt(ω) =
∫ t

0 f (s, ω)dBs is martingale with respect to Ft.

III.3 Extensions of Itô Integral

Here, we first extend the class V to beWH.

Definition III.3.1. WH Class of Processes.

WH denotes the class of processes f (t, ω) such that:

1. (t, ω) 7→ f (t, ω) is B ×F -measurable.
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2. There exists an increasing family of σ-algebra Ht such that:

• Bt is a martingale with respect to hHt, and

• ft is t-adapted.

3. P
[∫ T

S | f (s, ω)|2ds < ∞
]
= 1. ⌟

For f ∈ WH, we can still define:∫ T

S
ϕn(t, ω)dP(ω)

P−−→
∫ T

S
f (t, ω)dP(ω).

Note that the convergence is not in L2, but in probability, which is weaker. Also, with this class of func-
tions, the integral is not necessarily a martingale.

Remark III.3.2. This definition is applied to define higher derivatives on stochastic integrals. ⌟
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IV Itô Formula

IV.1 Itô Lemma

Here, we introduce the Itô lemma as a “chain rule” in stochastic setting.

Recall that:
1
2

B2
t =

1
2

t +
∫ t

0
BsdBs.

Consider f (Bt) = f ◦ Bt, we want to investigate d f (Bt).

Remark IV.1.1. This differs from the usual chain rule, and d f (Bt) can be expressed as a combination of
dt and dBt. ⌟

Definition IV.1.2. Itô Process.

Let Bt be Brownian motion on (Ω,F , P), a Itô process is a stochastic integral Xt of the form:

Xt(ω) = X0(ω) +
∫ b

0
u(s, ω)ds +

∫ t

0
v(s, ω)dBs,

where:

1. v ∈ WH,

2. P[
∫ t

0 |v(s, ω)|2ds < ∞ for all t ≥ 0] = 1,

3. u is Ht-adapted, and

4. P[
∫ t

0 |u(s, ω)|ds < ∞ for all t ≥ 0] = 1. ⌟

In the differential form, we rewrite:
dxt = udt + vdBt.

Remark IV.1.3. We can construct for xt on [0, T] that:

dxt = [BT − t]sudt + [BT − t]svdBt. ⌟

Theorem IV.1.4. Itô Lemma in 1-D.

Let Xt be a Itô process, and:
dXt = udt + vdBt.

Let g(t, x) ∈ C2([0, ∞)×R), then for any Yt(ω) = g(t, Xt(ω)), it is a Itô process and:

dYt =
∂g
∂t

(t, Xt)dt +
∂g
∂x

(t, Xt)dXt +
1
2

∂2g
∂x2 (t, Xt)(dXt)

2,
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abiding to the rules:

(dXt)
2 = (dXt) · (dXt) is computed by dt · dt = dt · dBt = 0, and dBt · dBt = dt.

Proof. Recall that:
dXt = udt + vdBt.

Consider Itô formula, we want to show:

g(t, xt) = g(0, x0) +
∫ t

0

(
∂g
∂t

(s, xs) + us
∂g
∂x

(s, xs) +
1
2

v2
s ·

∂2g
∂x2 (s, xs)

)
ds +

∫ t

0
vs

∂g
∂x

(s, xs)dBt.

Consider that vs = v(s, ω) and us = u(s, ω) are elementary processes:

g(t, xt) = g(0, x0) + ∑
j

∆g(tj, xj)

= g(0, x0) + ∑
j

∂g
∂x

∆tj + ∑
j

∂g
∂x

∆xj +
1
2 ∑

j

∂2g
∂t2 (∆tj)

2 + ∑
j

∂2g
∂t∂x

(∆tj)(∆xj) +
1
2 ∑

j

∂2g
∂x2 (∆xj)

2 + ∑
j

Rj.

If ∆tj → 0, we have:

∑
j

∂g
∂t

∆tj = ∑
j

∂g
∂tj

∆tj
a.s.−−→

∫ t

0

∂g
∂t

(s, xs)ds

∑
j

∂g
∂x

= ∑
j

∂g
∂x

(tj, xj)∆xj
L2
−−→

∫ t

0

∂g
∂x

(s, xs)dXs.

Then, we get:

∑
j

∂2g
∂x2 (∆xj)

2 = ∑
j

∂2g
∂x2

[
u2

j (∆tj)
2︸ ︷︷ ︸

(1)

+ 2ujvj(∆tj)∆Bj︸ ︷︷ ︸
(2)

+ v2
j (∆Bj)

2︸ ︷︷ ︸
(3)

]
.

We note that for (1), we have it as:

u2
j (∆tj)

2 = sup
j
(∆tj)∑

j

∂2g
∂x2 u2

j ∆tj = 0.

For (3), we have:

∑
j

∂g
∂x

v2
j (∆Bj)

2 L2
−−→

∫ t

0

∂2g
∂x

v2dx as ∆ti → 0.

By putting aj = a(tj), then:

E

[(
∑

j
aj((∆Bj)

2 − ∆tj)

)2]
= ∑

i,j
E
[
aiaj
(
(∆Bj)

2 − ∆tj
)(
(∆Bj)

2 − ∆tj
)]

.

Suppose i < j, we have the two terms independent, so the terms vanishes since E[(∆Bi)
2 − ∆tj] = 0. If
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i > j, we have:

∑
j

E[a2
j ((∆Bj)

2 − ∆tj)
2] = ∑

j
E[a2

j ]E[(∆Bj)
4 − 2(∆j)

2∆tj + (∆tj)
2]

= ∑
j

E[a2
j ] · (3(∆tj)

2 − 2(∆tj)
2 + (∆tj)

2) = 2 ∑
j

E[a2
j ] · (∆tj)

2 → 0.

Hence, we have:

∑
j

aj(∆Bj)
2 →

∫ t

0
a(s)ds in L2(P).

Example IV.1.5. Worked Example of Evaluting Itô Integral, I.

Consider It =
∫ t

0 BsdBs, we choose xt = Bt and g(t, x) = 1
2 x2. Then for:

Yt = g(t, Bt) =
1
2

B2
t ,

by applying the Itô lemma:

dYt =
∂g
∂t

dt +
∂g
∂x

dXt +
1
2

∂2g
∂2x

(dxt)
2 = BtdBt +

1
2
(dBt)

2 = BtdBt +
1
2

dt. ⌟

Example IV.1.6. Worked Example of Evaluting Itô Integral, II.

Consider It =
∫ t

0 sdBs, we let g(t, x) = tx and Yt = g(t, Bt) = tBt. Then by Itô lemma:

dYt = Btdt + tdBt + 0 = Btdt + tdBt.

Hence, in the integral form:

tBt =
∫ t

0
Bsds +

∫ t

0
sdBs︸ ︷︷ ︸
It

.

Therefore, we have:

It = tBt −
∫ t

0
Bsds. ⌟

Theorem IV.1.7. Integration by Parts.

Suppose f (t, ω) is continuous and of bounded variation with respect to s ∈ [0, t] for almost all ω. Then:∫ t

0
f (s)dBs = f (t)Bt −

∫ t

0
Bsd fs,

or equivalently:

It =
∫ t

0
Bsd fs = f (t)Bt −

∫ t

0
f (s)dBs.
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IV.2 Multidimensional Itô Formula

Then, our next step is to Itô formula for multi-dimensions. We let B(t, ω) =
(

B1(t, ω), · · · , Bm(t, ω)
)

denote m-dimensional (coordinately i.i.d.) Brownian motion, We can form the following Itô process:

dX1 = u1dt + v1,1dB1 + · · ·+ v1,mdBm.

dX2 = u2dt + v2,1dB1 + · · ·+ v2,mdBm.

...

dXn = undt + vn,1dB1 + · · ·+ vn,mdBm.

Here, we have {ui}n
i=1 and {vi,j}n,m

i,j=1.

We note that the first order Itô formula does not apply to this process.

In a matrix notation, we have:
dX(t) = udt + vdB(t),

where X(t) =


X1(t)
X2(t)

...
Xn(t)

, u =


u1

u2
...

un

, v =


v1,1 v1,2 · · · v1,m

v2,1 v2,2 · · · v2,m
...

...
. . .

...
vn,1 vn,2 · · · vn,m

, and dB(t) =


dB1(t)
dB2(t)

...
dBm(t)

.

Theorem IV.2.1. Itô Formula for Higher Dimensions.

Let X(t) be the n-dimensional Itô process as above. Let:

g(t, x) =
(

g1(t, x), · · · , gp(t, x)
)
∈ C2 on [0, ∞)×Rn → Rm,

Then the process Y(t, ω) = g
(
t, X(t)

)
satisfies that:

dYk =
∂gk
∂t

(t, x)dt +
∂gk
∂xi

(t, x)dXi +
1
2 ∑

i,j

∂2gk
∂xi∂xj

(t, x)dXidXj for 1 ≤ k ≤ p.

Here, we follow the rule: dBidBj = δi,jdt and dtdBi = dBidt = 0.

Remark IV.2.2. When m = n = 1, this is the 1-dimensional Itô formula. In particular:

(dXi)
2 = (uidt + vi,1dB1 + · · ·+ v1,mdBm)

2 = v2
i,1dt + v2

i,2dt + · · ·+ v2
1,mdt. ⌟

For the dBidBj = 0 part, we formally have for i 6= j:

E[dBidBj] = E[(Bi(t)− Bi(t− ∆t))(Bj(t)− Bj(t− ∆))] = E[(Bi(t)− Bi(t− ∆t))]E[(Bj(t)− Bj(t− ∆))] = 0.

For the case in which i = j:
E[dBidBi] = E[(Bi(t)− Bi(t− ∆t))2] = ∆t.
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Example IV.2.3. n-dimensional Bessel Process.

Let B = (B1, · · · , Bn) be standard n-dimensional Brownian motion with n ≥ 2 and consider:

R(t, ω) = |B(t, ω)| =
√

B2
1(t, ω) + · · ·+ B2

n(t, ω),

i.e., R(t, ω) measures the distance of the Brownian motion to the origin. We consider the function g(t, x) =

|x| =
√

x2
1 + · · ·+ x2

n.
By applying the multi-dimensional Itô formula, we find:

∂g
∂xi

=
1

2
√

x2
1 + · · ·+ x2

n

2xi =
xi√

x2
1 + · · ·+ x2

n

=
xi
R

.

Then, for the second partials, we have:

∂2g
∂x2

i
=

1√
x2

1 + · · ·+ x2
n

−
x2

i
(x2

1 + · · ·+ x2
n)

3/2
=

R2 − x2
i

R3 .

Note that if i 6= j, the differential form is zero, so we have:

dR =
n

∑
i=1

BidBi
R

+
1
2

n

∑
i=1

R2 − x2
i

R3 dt =
n

∑
i=1

BidBi
R

+
n− 1

2R
dt.

⌟

Note that the function is not differentiable, the function is not differentiable at x = 0, but Bt = 0 has
probability 0.

Example IV.2.4. Tanaka’s Formula and Local Time.

We try to apply Itô formula to:
g(Bt) = |Bt| with g(x) = |x|.

In this case, we note that the graph is:

x

y

Figure IV.1. Graph of y = |x|.

First, we consider the derivative:

g′(x) = sgn(x) =

1, when x ≥ 0,

−1, when x < 0.

The second derivative is:
g′′(x) = δ0(x).
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In this case, g is not C2 at 0, and we have:

|Bt| = g(Bt) =
∫ t

0
g′(Bs)ds +

1
2

∫ t

0
g′′(Bs)ds

=
∫ t

0
sgn(Bs)dBs +

1
2

∫ t

0
δ0(Bs)ds.

Alternatively, we defined gϵ for ϵ > 0 near zero:

gϵ(x) =


|x|, when |x| ≥ ϵ,

1
2

(
ϵ +

x2

ϵ

)
, when |x| < ϵ.

We may note that gϵ → g(x) as ϵ→ 0.
Then, we consider Y(ϵ)

t = gϵ(Xt), and by the Itô formula, we get:

dY(ϵ)
t = g′ϵ(Bt)dBt +

1
2

g′′ϵ (Bt)dt.

We note that:

g′ϵ =


1, when x ≥ ϵ,
x
ϵ

, when − ϵ < x < ϵ,

−1, when x ≤ −ϵ.

Then, the second derivative is:

g′′ϵ (x) =

0, when |x| ≥ ϵ,

1
ϵ

, when |x| < ϵ,
=

1
ϵ

1|x|<ϵ.

Then, we have:

Y(ϵ)
t = gϵ(Bt) = gϵ(B0) +

∫ t

0
g′ϵ(Bs)dBs +

1
2ϵ

∫ t

0
1|Bs |<ϵds

= gϵ(B0) +
∫ t

0
g′ϵ(Bs)dBs +

1
2ϵ

∣∣{s ∈ [0, t] : |Bs| < ϵ}
∣∣.

Note that the last term measures how long the Brownian motion stays on the ϵ-neighborhood of 0, and
the division makes it the density.
Then, we use Itô isometry to get that:

E

[∣∣∣∣∫ t

0
g′ϵ(Bs)1|Bs |<ϵdBs

∣∣∣∣2
]
= E

[∫ t

0

∣∣∣∣Bs

ϵ

∣∣∣∣2 1|Bs |<ϵds

]

≤ E

[∫ t

0
1|Bs |<ϵ

]
ds =

∫ t

0
P[|Bs| < ϵ]ds ϵ→0−−→ 0.

Therefore, we have
∫ t

0 g′ϵ(Bs)1|Bs |<ϵdBs converges to 0 in the L2 sense. Therefore, we can reduce our
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formula into:

Y(ϵ)
t = gϵ(B0) +

∫ t

0
sgn(Bs)1|Bs |≥ϵdBs +

1
2ϵ
|{s ∈ [0, t] : |Bs| < ϵ}|

ϵ→0−−→ g(B0) +
∫ t

0
sgn(Bs)ds + lim

ϵ→0

1
2ϵ
|{s ∈ [0, t] : |Bs| < ϵ}|︸ ︷︷ ︸

Lt(ω)

.

Hence, we have the Tanaka formula as:

|Bt| =
∫ t

0
sgn(Bs)dBs + Lt,

and Lt is the local time of Brownian motion at 0. ⌟

Note that when we have g(x) = |x − a| for a ∈ R, then we shall have Lt as the local time of Brownian
motion at a.

IV.3 Martingale Representation Theory

The idea is that we have the Itô integral as:

Xt = X0 +
∫ t

0
v(s, ω)dB(s)

in n-dimension is martingale with respect to the filtration F (n)
t .

Given a martingale {Mt}t≥0, can we have:

Mt = E[M0] +
∫ t

0
f (s, ω)dB(s)?

Proposition IV.3.1. Step Random Variable is Dense.

Fix T > 0, the set of random variables:

{ϕ(Bt1 , · · · , Btn) : ti ∈ [0, T], ϕ ∈ C∞
0 (Rn), n = 1, 2, · · · }

is dense in L2(Ft, P).

Proof. Doob-Dynkin Formula (Proposition II.2.3).

Proposition IV.3.2. Linear Span of Class of Functions is Dense.

The linear span of the random variables of the type:

exp
[∫ T

0
h(t)dBt(ω)− 1

2

∫ T

0
h2(t)dt

]
, h ∈ L2([0, T])

is dense in L2(F , P).
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Then, we introduce the main theorem.

Theorem IV.3.3. Martingale Representation Theorem.

Let B(t) =
(

B1(t), B2(t), · · · , Bn(t)
)

be n-dimensional Brownian motion. Suppose Mt is an F (n)
t -martingale

and Mt ∈ L2(P) for all t ≥ 0, then there exists a unique stochastic process g(t, ω) such that g ∈ V (n)(0, t),
and:

Mt(ω) = E[M0] +
∫ t

0
g(s, ω)dB(s, ω) a.s. for all t ≥ 0.

The above theorem is a consequence of the following.

Theorem IV.3.4. Itô Representation Theorem.

Let F ∈ L2(F (n)
T , P), then there exists a unique stochastic process f (t, ω) ∈ V (n)(0, T) such that:

F(ω) = E[F] +
∫ T

0
f (t, ω)dB(t).

Remark IV.3.5. Iterative Itô Representation Theorem.

Consider we apply Itô representation theorem multiple times:

F(T, ω) = E[F] +
∫ T

0
E[ f ] +

∫ t

0
g(s, ω)dB(s)dB(t)

= E[F] +
∫ T

0
E[ f ]dBs +

∫∫
0<s<t<T

g(s, ω)dB(s)dB(t)

=
∞

∑
n=0

Cn In(T, ω),

which is called the Itô-Wiener chaos expansion. ⌟

Proof of Theorem IV.3.4. Without loss of generality, let n = 1. First, we assume:

F(ω) = exp
[∫ T

0
h(t)dBt(ω)− 1

2

∫ T

0
h2(t)dt

]
for some h ∈ L2([0, T]).

We define:
Yt(ω) = exp

[∫ t

0
h(s)dBs(ω)− 1

2

∫ t

0
h2(s)ds

]
for 0 ≤ t ≤ T.

By the Itô formula, we have:

dYt = Yt

[(
h(t)dBt −

1
2

h2(t)
)

dt +
1
2

Yt
(
h(t)dBt

)2
]
= Yth(t)dBt.
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Hence, it is equivalently:

Yt = 1 +
∫ t

0
Ysh(s)dBs and FT = 1 +

∫ T

0
Ysh(s)dBs.

Second, we assume if F ∈ L2(FT , P), then there exists unique Fn in the exponential-martingale form such
that Fn → F in L2(FT , P) sense. We have:

Fn(ω) = E[Fn] +
∫ T

0
fn(s, ω)dBs(ω), with fn ∈ V([0, T]).

Then, by the Itô isometry, we have:

E[|Fn − Fm|2] = (E[|Fn − Fm|])2 +
∫ T

0
E[| fn − fm|2]dt

≤ E[|Fn − Fm|2] +
∫ T

0
E[| fn − fm|2]dt→ 0 as n, m→ ∞.

Hence, we have fn → f in L2 to f ∈ V [0, T] by completeness, so:

F = lim
n→∞

Fn = lim
n→∞

(
E[Fn] +

∫ T

0
fndB

)
= E[F] +

∫ T

0
f dB.

Hence, we have prove the existence, and we shall now think about uniqueness.
Consider Itô Isometry, there exists f1, f2 such that:

F(ω) = E[F] +
∫ T

0
f1(t, ω)dBt = E[F] +

∫ T

0
f2(t, ω)dBt,

and hence:

0 = E

[∣∣∣∣∫ T

0

(
f1(t, ω)− f2(t, ω)

)
dBt

∣∣∣∣2
]
= E

[
| f1(t, ω)− f2(t, ω)|2

]
dt.

Hence, we have f1(t, ω) = f2(t, ω) almost anywhere for (t, ω) ∈ [0, T]×Ω.

Then, we can use Itô representation theorem to prove the Martingale representation theorem.

Proof of Theorem IV.3.3. Without loss of generality, we assume n = 1. By the Itô representation theorem,
we have that for all t, there exists a unique f (t)(s, ω) ∈ L2(F , P) such that:

Mt(ω) = E[Mt] +
∫ t

0
f (t)(s, ω)dBs(ω) = E[M0] +

∫ t

0
f (t)(s, ω)dBs(ω).

Now, assume 0 ≤ t1 ≤ t2, then:

Mt1 = E[Mt2 | Ft1 ] = E[M0] + E

[∫ t2

0
f (t2)(s, ω)dBs(ω) | Ft1

]
= E[M0] +

∫ t1

0
f (t2)(s, ω)dBs(ω),

by considering it as:

F(t2, t̃2) =
∫ t

0
f (t̃2)(s, ω)dBs for any fixed t̃2 > 0,
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so that, F(t2, t̃2) is martingale if t2 < t̃2.
Recall that:

Mt1 = E[M0] +
∫ t1

0
f (t1)(s, ω)dBs(ω).

So we must have that:

E

[(∫ t1

0
( f (t2) − f (t1))dB

)2
]
=
∫ t1

0
E[( f (t2) − f (t1))2]ds = 0,

and therefore:
f (t1)(s, ω) = f (t2)(s, ω) for a.a. (s, ω) ∈ [0, t1]×Ω.

Hence, we can define f (s, ω) for a.a. s ∈ [0, ∞)×Ω by setting:

f (s, ω) = f (N)(s, ω) if s ∈ [0, N],

and then we have:

Mt = E[M0] +
∫ t

0
f (t)(s, ω)dBs(ω) = E[M0] +

∫ t

0
f (s, ω)dBs(ω) for all t ≥ 0.
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V Stochastic Differential Equations

V.1 Introduction and Examples

Recall that:
dXt

dt
= b(t, Xt) + σ(t, Xt)

dBt

dt
,

in which dBt
dt is not differentiable, so we have written it in differential form:

dXt = b(t, Xt)dt + σ(t, Xt)dBt,

and we have that:
Xt = X0 +

∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dBs.

Remark V.1.1. Recall that for Itô process, we have:

dXt = udt + vdBt,

in which the definition is justified. ⌟

Now, this shed the following questions:

• Can we obtain existence and uniqueness of the solution?

• Can we solve for the solution?

Here, we give a counter example to existence and uniqueness.

Example V.1.2. Non-existence Solutions.

Consider the ODE:
dXt

dt
= X2

t , X0 = 1.

We see the solution as:
Xt =

1
1− t

, which is not global. ⌟

The above example corresponds to the SDE that:

b(t, x) = x2, σ(t, x) = 0.

Example V.1.3. Non-unique Solution.

Consider the ODE:
dXt

dt
= 3X2/3

t , X0 = 0.

Here, we can construct the solution as:

Xt =

0, when t ≤ a,

(t− a)3, when t > a,
for all a ≥ 0.
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Since the choice of a is arbitrary, the solution is not unique. ⌟

The above example also corresponds to the SDE that:

b(t, x) = x2/3, σ(t, x) = 0.

Hence, we need to think about some further conditions to ensure existence and uniqueness. Then, we see
some examples of solving the SDEs.

Proposition V.1.4. Product Rule.

We consider the product rule for the product of random variables, namely:

d(XtYt) = XtdYt + YtdXt + dXtdYt.

Example V.1.5. Geometric Brownian Motion / Population Growth.

Here, we pose that:
dNt = rNtdt + αNtdBt,

which can be transformed into:
dNt

Nt
= rdt + αdBt.

So, the integral will be: ∫ t

0

dNs

Ns
= rt + αBt where B0 = 0.

To evaluate the integral on the left hind side we let:

g(t, x) = log(x),

so we have the Itô formula that:

d log(Nt) =
1

Nt
dNt +

1
2

(
− 1

N2
t

)
(dNt)

2 =
dNt

Nt
− α2

2
dt.

Thus, we equivalently have:

log(Nt)− log(N0) =
∫ t

0

dNs

Ns
− α2

2
t = rt + αBt −

α2

2
t =

(
r− α2

2

)
t + αBt.

Therefore, we have:

Nt = N0 exp
[(

r− α2

2

)
t + αBt

]
,

and we have existence for this example. ⌟

Remark V.1.6.

• E[Nt] = E[N0]E
[
exp

[(
r− α2

2 + αBt

)]]
= E[N0]ert.
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• (The Law of Iterated Logarithm). Now, we have:

lim sup
t→∞

Bt√
2t log log t

= 1 a.s.

• If r > 1
2 α2, then Nt → ∞ a.s. as t↗ ∞.

If r < 1
2 α2, then Nt → 0 a.s. as t↗ ∞.

If r = 1
2 α2, then Nt fluctuates. ⌟

Example V.1.7. Brownian Bridge.

Consider the solution of the following SDE:dXt = −
Xt

1− t
dt + dBt for 0 ≤ t < 1,

X0 = 0.

Here, we claim that the solution is:

Xt =

(1− t)
∫ t

0
1

1−s dBs, for 0 ≤ t < 1,

0, when t = 1.

We verify by Itô formula:

dXt = −
∫ t

0

1
1− s

dBsdt + (1− t)
1

1− t
dBt = −

Xt

1− t
dt + dBt.

Note that the Brownian motion has the two ends as zero, so it is fixed like a bridge. ⌟

Remark V.1.8. As t↗ 1, we have Xt → 0 a.s. and E[|Xt|2]→ 0. ⌟

Example V.1.9. Langevin’s Equation / Ornstein-Uhlenback Process.

Consider the differential equation: dXt = −bXtdt + σdBt,

X0 = x.

The solution is:
Xt = e−btx + σ

∫ t

0
e−b(t−s)dBs.

For the solution, we notice the following:

1. For E[Xt], we consider:

E[Xt] = E[e−btx] + σE

[∫ t

0
e−b(t−s)dBs

]
= xe−bt,

which approaches 0 as t→ ∞.
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2. For E[X2
t ], we consider:

E[X2
t ] = E

[
e−2btx2 + 2e−btxσ

∫ t

0
e−b(t−s)dBs + σ2

(∫ t

0
e−b(t−s)dBs

)2
]

= E[x2]e−2bt + σ2
∫ t

0
e−2b(t−s)ds

= E[x2]e−2bt +
σ2

2b
(1− 2e−bt).

3. We have the variance of the process as:

Var[Xt] = E[X2
t ]− (E[Xt])

2 =
σ2

2b
(1− 2r−bt),

which approaches σ2

2b as t→ ∞.

Here, since Xt has solution in its form, the distribution is:

N (µt, σ2
t ) = N

(
0,

σ2

2b

)
.

Here, to derive this out, we shall need the method of integrating factor.
For the Langevin’s case, we have F(t) = ebt and then multiply it on both sides:

FtdXt = −bFtXtdt + σFtdBt = −XtdFt + σdBt,

that is d(FtXt) = σFtdBt or FtXt − F0X0 = σ
∫ t

0 FsdBs. ⌟

Particularly, in the application of physics, σ is typically the temperature in the model.

Example V.1.10. Gradient Flow Pertuabed by Additive Noise.

Consider the SDE:
dYt = rdt︸︷︷︸

drift

+ αYtdBt︸ ︷︷ ︸
multiplicative noise

.

Here, we use the integrating factor as:

Ft = exp
(
−αBt +

1
2

α2t
)

,

in which we have:
dFt = Ft(−αdBt + α2dt).

Then, we consider the product rule:

d(FtYt) = FtdYt + YtdFt + dFtdYt

= FtdYt + YtFt(−αdBt + α2dt) + (−αFtdBt)(αYtdBt)

= Ft(dYt − αYtdBt) = Ftrdt.
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Hence, we write in the standard form:

FtYt = F0Y0 +
∫ t

0
rFsds = Y0 +

∫ t

0
exp

(
−αBs +

1
2

α2s
)

ds.

Thus, with only the Yt part, we have:

Yt = Y0 exp
(

αBt −
1
2

α2t
)
+
∫ t

0
exp

(
−α(Bt − Bs)−

1
2

α2(t− s)
)

ds. ⌟

In particular, when we have (semi-)linear SDEs, that is:

b(t, x) = b̃(t)(αx + β) and σ(t, x) = σ̃(t)(αx + β),

we can often find the solutions using the integrating factor method.

Then, we want to consider some multidimensional case.

Example V.1.11. Multi-Dimension Brownian Motion.

Consider the SDE of:
LQ′′t + RQt +

1
C

Qt = Gt + αWt.

For SDEs, we can only have one dimension, so we consider the vector version:

X =

(
X1

X2

)
=

(
Qt

Q′t

)
,

so that we have: X′1 = X2,

LX′2 = −RX2 −
1
C

X1 + Gt + α.

Hence, we have:
dX = dX(t) = AX(t)dt + H(t)dt + KdBt,

with dX =

(
dX1

dX2

)
, A =

(
0 1
− 1

CL − R
L

)
, H(t) =

(
0
Gt
L

)
, and K =

(
0
α
L

)
.

We rewrite the differential form by multiplying exp(−At) on both sides:

exp(−At)dX(t)− exp(−At)AX(t)dt = exp(−At)[H(t)dt + KdBt],

in which we can consider the left hand side as d[exp(−At)X(t)], which is the product rule in multi-
dimension.
Recall for the matrix exponentials, we have:

exp(A) =
∞

∑
n=0

An

n!
,
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and for the right hand side, we have:

exp(−At)X(t)− X(0) =
∫ t

0
exp(−As)H(s)ds +

∫ t

0
exp(−As)KdBs.

Hence, we have:

X(t) = exp(At)[X(0) + exp(−At)KBt] + exp(At)
∫ t

0
exp(−As)[H(s) + AKBs]ds. ⌟

V.2 Existence and Uniqueness (Strong Solution)

In general, we see some issues when there is not a unique solution, we we consider the following theorem.

Theorem V.2.1. Existence and Uniqueness for SDEs.

Let T > 0 and b(·, ·) : [0, T]×Rn → Rn and σ(·, ·) : [0, T]×Rn → Rn×m be measurable function satisfying
that:

1. Linear Growth. |b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) for x ∈ Rn and t ∈ [0, T],

2. Lipschitz Condition. |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y| for x, y ∈ Rn and t ∈ [0, T].

Let Z be a random variable independent of the Brownian motion and E[|Z|2] < ∞.
Then, the SDE: {

dXt = b(t, Xt)dt + σ(t, Xt)dBt, 0 < t ≤ T,

X0 = Z,

has a unique t-continuous solution Xt(ω) with property that:

Xt(ω) is adapted to F 2 = σ(Z, Bs, s ≤ t) and E

[∫ T

0
|Xt|2dt

]
< ∞.

Note that this is different from the existence and uniqueness of ODEs, and we are only enforcing continu-
ity, but not differentiability of the solution.

Remark V.2.2.

• When the linear growth condition does not hold, then there is no global solution.
When the linear growth condition holds, then we have existence, that is, there exists X = {Xt}t∈[0,T]

such that the stochastic integral of the SDE is adapted.

• When the Lipschitz condition does not hold, then there is no uniqueness.
When the Lipshitz condition holds, then we have (pathwise) uniqueness, then for any X, Y that
satisfies the solution, P{t ∈ [0, 1] : X(t) = Y(t)} = 1.

Since they were applied to ODEs, then they are necessary condition. ⌟
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Remark V.2.3. Yamaha-Watanabe Theory.

Here, this is also called the Yamaha-Watanabe result in which for:

σ(t, x) =
√

x,

we can still guarantee the existence and uniqueness result.
In fact, it is prove that for σ = xβ, it satisfies if β ≥ 1/2 and not if β < 1/2.
Hence, the diffusion part conditions in Theorem V.2.1 is not necessary. ⌟

Proof of Theorem V.2.1. Here, we prove the uniqueness and existence separately.

• (Uniqueness:) Consider Itô isometry and Lipschitz condition. Let X1(t, ω) = X and X2(t, ω) = X̂ be
the solutions with initial values Z = Ẑ. We put:

u(s, ω) = b(s, Xs)− b(s, X̂s),

and:
γ(s, ω) = σ(s, Xs)− σ(s, X̂s).

Then, we have the expectation:

E[|Xt − X̂t|2] = E

[(
Z− Ẑ +

∫ t

0
uds +

∫ t

0
γdBs

)2
]

≤ 3E[|Z− Ẑ|2] + 3E

[∣∣∣∣∫ t

0
uds
∣∣∣∣2
]
+ 3E

[∣∣∣∣∫ t

0
γdBs

∣∣∣∣2
]

≤ 3E[|Z− Ẑ|2] + 3tE
[∫ t

0
u2ds

]
+ 3E

[∫ t

0
γ2ds

]
≤ 3E[|Z− Ẑ|2] + 3(1 + T)D2

∫ t

0
E[|Xs − X̂s|2]ds.

So the function v(t) = E[|Xt − X̂t|2] for 0 ≤ t ≤ T satisfied:

V(t) ≤ F + A
∫ t

0
v(s)ds,

where:
F = 3E[|Z− Ẑ|2] = 0, and A = 3(1 + T)D2,

and so by the Gronwall inequality, we conclude:

V(t) ≤ F exp(At),

and by Gronwall’s inequality, we conclude that:

V(t) ≤ F exp(At), and we have F = 0 so that V(t) = 0.

Remark V.2.4. Note that the |σ(t, x)− σ(t, y)| is not necessary, for example, with σ(t, x) =
√

x or Osgood’s
condition.
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Note that with Yamada-Watanabe, we have:

Ṽ(t) = E[|Xt − X̂t|],

so we have no Itô isometry, but we still have Itô formula similar as local time. ⌟

• (Existence:) Similar to ODEs, we use the Picard iteration.
We define:

Y(0)
t = X0 and Y(k)

t = Y(k)
t (ω)

inductively, as follows:

Y(k+1)
t = X0 +

∫ t

0
b(s, Y(k)

s )ds +
∫ t

0
σ(s, Y(k)

s )dBs.

Then the same argument as uniqueness part implies that:

E[|Y(k+1)
t −Y(k)

t |] ≤ 3(1 + T)D2
∫ t

0
E[|Y(k)

s −Y(k−1)
s |2]ds,

and:
E[|Y(1)

t −Y(0)
t |

2] ≤ wC2t2E[(1 + |X0|)2] + 2C2t
(
E[|X0|2] + 1

)
≤ A1t,

where A1 depends on C, T, and E[X2
0 ].

By induction on k, we obtain that:

E[|Y(k)
s −Y(k−1)

s |2] ≤
Ak+1

2 tk+1

(k + 1)!
,

where A2 depends on C, T, and E[X2
0 ].

Now we have:

‖Y(m)
t −Y(n)

t ‖L2(m×P) =

∥∥∥∥∥m−1

∑
k=1

(Y(k+1)
t −Y(k)

t )

∥∥∥∥∥
≤

m−1

∑
k=n
‖Y(k+1)

t −Y(k)
t ‖L2(m×P) =

m−1

∑
k=n

(
E

[∫ T

0
|Y(k+1)

t −Y(k)
t |

2dt
]) 1

2

≤
m−1

∑
k=n

(∫ t

0

Ak+1
2 tk+1

(k + 1)!
dt

) 1
2

=
m−1

∑
k=n

(
Ak+1

2 Tk+2

(k + 2)!

) 1
2

→ 0

as m, n → ∞. Therefore, {Y(n)
t }∞

n=0 is a Cauchy sequence in L2(m× P). Hence, it is convergent in
L2(m×P), so we define:

X0 = lim
n→∞

Y(n)
t in L2(m×P)

and it is F 2
t -measurable for all t ∈ [0, T].

Then,we show that the function actually satisfies the SDE. For all n and t ∈ [0, T], we have:

Y(n+1)
t = X0 +

∫ t

0
b(s, Y(n)

s )ds +
∫ t

0
σ(s, Y(n)

s )dBs,
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and we want to show the L2 condition that:∫ t

0
b(s, Y(n)

s )ds L2
−−→

∫ t

0
b(s, Xs)ds

using Hölder inequality and Itô isometry.
For the t-continuous part, both integrals have continuous versions.

Hence, we have proven the existence and uniqueness of the solution.

Remark V.2.5. The solution obtained in the previous section is called a strong solution, where the σ-
algebra (F z

t ) and Brownian motion ({Bt}) is given and fixed. ⌟

Definition V.2.6. Strong Solution.

Given a probability space (Ω,F , P, {Ft}) and Brownian motion {Bt}. We say Xt is strong solution if:

• Xt is F z
t = σ({Ft}, Z)-adapted, and

• Xt that satisfies the SDE and P{
∫ 1

0 |b(s, XS)|+ |σ(s, Xs)|2ds < ∞} = 1. ⌟

Remark V.2.7. If the SDE satisfies the conditions in the Existence and Uniqueness theorem, then it has
a unique strong solution. ⌟

For the weak solution, we need to find and construct the σ-algebra (F̃ z
t ) and Brownian motion ({B̃t}),

which is often called a distribution solution. Another type of solution is a martingale solution.

V.3 Weak Solution

Definition V.3.1. Weak Solution.

A weak solution of a Stochastic differential equation is a triple
(
(X, B), (Ω,F , P),H

)
such that:

1. (Ω,F , P) is a complete probability space, Ht ⊂ F is the filtration.

2. Xt is Ht-adapted, for the stochastic integral form of the SDE, and

3. P
{∫ t

0 |b(s0Xs)|ds + |σ(s, Xs)|2ds < +∞
}
= 1. ⌟

Remark V.3.2. Weak solution for SDEs is not the same as weak solution for PDEs, for example:

∂tu−
1
2

∆u = f on Rd

Then for all ϕ ∈ C∞(Rd), we have:∫ T

0

∫
Rd

ϕ

[
∂tu−

1
2

∆u
]
=
∫ T

0

∫
Rd

f ϕ.
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Also, for the martingale solutions, we have the test function that for all ϕ, we have:

ϕ(Xt) =
∫ t

0
ϕ(Xs)ds

must be a martingale. ⌟

Then, we also want a weak uniqueness.

Definition V.3.3. Weak Uniqueness.

Let the solutions be (X(1), B(1)) and {X(2), B(2)}, and we defined uniqueness in law such that Law(X(1)) =

Law(X(2)), namely, for all t1, · · · , tk ∈ [0, T] and for all k ∈ N:

P1(X(1)
t1
∈ A1, · · · , X(1)

tk
∈ Ak) = P2(X(2)

t1
∈ A1, · · · , X(2)

tk
∈ Ak)

for all A1, · · · , Ak ∈ B(Rn). This is equivalently that:

P1(X(1) ∈ A) = P2(X(2) ∈ A) for all A ∈ B(R[0,T]). ⌟

Remark V.3.4. Gisanov’s Theorem.

For exponential martingale, martingale under P implies Brownian motion under a new probability mea-
sure M. ⌟

Proposition V.3.5. Existence and Uniqueness =⇒ Weak Uniqueness.

If b and σ satisfies the linear growth and Lipschitz condition, then a solution (weak or strong) is weakly
unique.

In fact, the strong/pathwise uniqueness implies weak uniqueness. It can be shown by applying the Picard
iteration and induction, that is:

X(k+1)
t = 2 +

∫ t

0
b(s, X(k)

s )ds +
∫ t

0
σ(s, X(k)

s )dBs.

Hence, X(k) is weakly unique, so that X(k+1) is weakly unique.

Remark V.3.6. Watanabe theorem.

Strong uniqueness implies weak uniqueness. ⌟

Theorem V.3.7. Convergen in Law for Transpose.

For an Itô process dYt = vdBt and Y0 = 0, we have V(t, ω) ∈ Vn×m
H , and VV⊺ = In almost surely.



SDEs. V STOCHASTIC DIFFERENTIAL EQUATIONS 54

Example V.3.8. Weak Solution is more General.

We want to have a case of no strong solution but only weak solution.
The Tanaka equation in 1D is:

dXt = sgn(Xt)dBt, X0 = 0.

Here, we note that σ(x) = sgn(x) does not satisfy Lipschitz condition, and we want to prove that strong
solution does not exist.

Proof. Suppose the strong solution exists for Tanaka equation, we let B̂t denote the Brownian motion and

F̂t = σ

({
B̂s

}
s≤t

)
.

Then, we define:

Yt =
∫ t

0
sgn(B̂s)dB̂s

= |B̂t| − |B̂0| − L̂t(ω),

where we have local time as:
lim
ϵ→0

1
2ϵ

∣∣{s ∈ [0, t] :
∣∣B̂s
∣∣ ≤ ϵ

}∣∣ .

Then Yt is adapted to Ĝt = σ
({
|B̂s|

}
s≤t

)
⊊ F̂t.

But we also have dBt = sgn(Xt)dXt, so | sgn(Xt)|2 = 1 implies that Xt is a Brownian motion.
Recall the preceding theorem, Y = {Yt} coincides in Law with h-dimensional Brownian motion, and by
the above argument applied to B̂t = Xt, Yt = Bt.
Hence:

σ ({Bs}s≤t) = Ft ⊊Mt = σ
(
{Xs}s≤t

)
⊂ σ

(
{Bs}s≤t

)
= Ft.

Hence, this is a contradiction as Ft ⊊ Ft.

Then, we want to show that a weak solution exists. We choose Xt to be any Brownian motion B̂t. Then we
define B̃t as:

B̃t =
∫ t

0
sgn(Xs)dXs,

i.e., we have:
dB̃t = sgn(Xt)dXt and dXt = sgn(Xt)dB̂t,

and hence we have weak uniqueness. ⌟
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VI Diffusion Models

VI.1 Markov Property

Definition VI.1.1. Time-homogeneous Itô Diffusion.

A stochastic process Xt(ω) = X(t, ω) : [s, ∞)×Ω → Rn is call time-homogeneous diffusion if it satisfies
a SDE of the form:

dXt = b(Xt, t)dt + σ(Xt)dBt, t ≥ s, Xs = 0

where Bt is a n-dimensional Brownian motion, b : Rn → Rn, and σ : Rn → Rn×n satisfying linear growth
and Lipschitz conditions:

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y| for all x, y ∈ Rn. ⌟

Here, we denote the unique solution by:

Xt = Xs,x
t ; t ≥ s.

If s = 0, then Xx
t = X0,s

t , and the process satisfies that:

Xs,x
s+k = x +

∫ s+h

s
b(Xs,x

u )du +
∫ s+k

s
σ(Xs,x

u )dBu

= x +
∫ h

0
b(Xs,x

s+v)dv +
∫ h

0
σ(Xs,x

s+v)dB̃v.

where B̃r = Bs+v − Bs for v ≥ 0 is a new Brownian motion.

Since {B̃v}v≥0 and {Bt}t≥0 have the same P0-distribution, it follows from the weak uniqueness of the
solution, the SDE:

dXt = b(Xt)dt + σ(Xt)dBt, X0 = x

that {Xs,x
s+h}h≥0 and {X0,x

h }h≥0 have the same P0-distribution, i.e., {Xt}t≥0 is time-homogeneous.

Here, we let Qx denote the probability law of a give (time-homogeneous) Itô diffusion {Xt} when X0 =

x ∈ Rn. The expectation with respect to Qx is denoted by Ex[·], and we have:

Ex
Qx
[

f1(Xt1) f2(Xt2) · · · fk(Xtk )
]
= EP

[
f1(Xtx

1
) f2(Xtx

2
) · · · fk(Xtx

k
)
]

for all bounded Borel functions, f1, · · · , fk and t1, · · · , tk ≥ 0, k = 1, 2, · · · . Then, the filtration is:

F (m) = σ({Bs}s≤t) ⊃Mt = σ({Xs}s≤t).
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Theorem VI.1.2. Markov Property for Itô Diffusions.

Let f be a bounded Borel function: Rn → R. Then, for t, h ≥ 0:

Ex[ f (Xt+h) | F
(m)
t ] = EXt(ω)[ f (Xh)] := Ey[ f (Xh)]

∣∣
y=Xt(ω)

.

Note that Ex means that we apply Qx, the probability measure of Xx
t , while the left hand side can also be

written as E[ f (Xx
t+h | F

(m)
t )](ω).

Remark VI.1.3. We can derive the equality that forMt = σ({Xs}s≤t) ⊂ F (m)
t :

Ex[ f (Xt+h) | Mt](ω) = Ex[Ex[ f (Xt+h) | F
(m)
t ] | Mt

]
= Ex[EXt [ f (Xh)] | Mt

]
= EXt(ω)[ f (Xj)],

whereMt is σ({Xs}s≤t) and EXt(ω) is only σ(Xt)-measurable.
Hence, Markov property means memoryless. ⌟

Proof. Since for r ≥ t, we have:

Xr(ω) = Xt(ω) +
∫ r

t
b(Xu)du +

∫ r

t
σ(Xu)dBu,

we have strong uniqueness of Xr(ω) = Xt,Xt
r (ω).

If we define F(x, t, r, ω) = Xt,x
r (ω), we have:

Xr(ω) = F(Xt, t, r, ω), for r ≥ t.

Note that ω 7→ F(x, t, r, ω) is independent of F (m)
t .

Hence, we can rewrite Xr(ω) = Xt,Xt
r (ω) as:

E[ f
(

F(Xt, t, t + h, ω)
)
| F (m)

t ] = E[ f
(

F(x, 0, h, ω)
)
]
∣∣
x=Xt

,

and we can put g(X, ω) = f ◦ F(x, t, t + h, ω), then (xω) 7→ g(x, ω) is measurable. We can approximate g
pointwise bounded by function of form:

g(x, ω) = lim
ℓ→∞

ℓ

∑
k=1

ϕk(x)ψk(ω).

Then, we can get that:

E[g(Xt, ω) | Ft] = E

[
lim
ℓ→∞

ℓ

∑
k=1

ϕk(x)ψk(ω) | F (m)
t

]
= lim

ℓ→∞

ℓ

∑
k=1

E[ϕk(x)ψk(ω) | F (m)
t ]

= lim
ℓ→∞

ℓ

∑
k=1

ϕk(y)E[ψk(ω) | F (m)
t ]

∣∣
y=Xt

= E

[
lim
ℓ→∞

ℓ

∑
k=1

ϕk(y)ψk(ω) | F (m)
t

] ∣∣
y=Xt

= E[g(y, ω) | F (m)
t ]

∣∣
y=Xt

= E[g(y, ω)]
∣∣
y=Xt(ω)

.
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Therefore, since {Xt} is time-homogeneous, we have:

E
[

f
(

F(Xt, t, t + h, ω)
)
| F (m)

t
]
= E

[
f
(

F(y, t, t + h, ω)
)]∣∣

y=Xt(ω)

= E
[

f
(

F(y, 0, h, ω)
)]∣∣

y=Xt(ω)
.

Hence, we have it satisfying the Markov property.

The proof uses the freezing technique to write the function as a pointwise approximation.

Remark VI.1.4. Freezing Lemma.

Let X : (Ω,A) → (D,D) and Y : (Ω,A) → (E, E) be two random variables. Assume that X ,Y ⊂ A
are σ-algebras such that X is X → D measurable and Y is Y → E measurable and X ⊥ Y (they are
independent), then:

E[Φ(X, Y) | X ] = E[Φ(x, Y)]
∣∣
x=X = E[Φ(X, Y) | X].

⌟

Remark VI.1.5. Alternative Definition of Markov Process.

A Rn-valued stochastic process {Xt} os called a Markov process with respect to Mt if there exists a
transition probability function p(s, t, x, dy) on Rn such that:

E[ f (Xt) | Ms] = E[ f (Xt) | Xs] = ps,t f (Xs) :=
∫

R
f (y)p(s, t, Xs, dy). ⌟

VI.2 Stopping Time and Strong Markov Property

Definition VI.2.1. Stopping Times.

Let {Nt} be an increasing family of σ-algebras. A function τ : Ω → [0, ∞) is called a stopping time with
respect to {Mt} if:

{ω : τ(ω) ≤ t} ⊂ Nt for all t ≥ 0. ⌟

Remark VI.2.2. If τ(ω) = t0 for all ω, then τ is a stopping time with respect to any filtration, since:

{τ ≤ t} =

Ω, when t0 ≤ t

∅, when t0 > t. ⌟

Proposition VI.2.3. Properties of Stopping Time.

Let τ1, τ2 be two stopping times with respect to Ft, then:

1. {J < t} ∈ Ft, and {J = t} ∈ Ft for all t ≥ 0.
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2. τ1 ∧ τ2 := min{τ1, τ2} and τ1 ∨ τ2 := max{τ1, τ2} are also stopping times.

Proof. 1. For all s, {J ≤ s} ∈ Fs, hence, for all t:

{τ < t} =
∞⋃

n=1

{
τ ≤

(
t− 1

n

)
∨ 0
}
∈

∞⋃
n=1

Fsn ⊂ Ft.

2. For the second one, we can also represent the ∧ and ∨ via countable unions and compliments of the
σ-algebras.

Proposition VI.2.4. First Exit Time is Stopping Time.

Let U ⊂ Rn be open, then the first exit time:

τU := inf{t > 0 : Xt /∈ U}

is a stopping time with respect to {Mt}.

Proof. Since:

{ω : Ju ≤ t} =
∞⋂

m=1

⋃
r∈Q
r<t

{ω : Xr /∈ Km} ∈ Mt,

where {Km}∞
m=1 is a sequence of increasing closed sets, i.e., U =

⋃∞
m=1 Km.

Definition VI.2.5. Stochstic Integral with respect to Stopping Time.

If G ∈ L2 and τ ≤ T is a stopping time for some fixed T > 0, we define:∫ τ

0
GdBt =

∫ T

0
G1{t≤τ}dBt. ⌟

Note that only by τ being a stopping time, we can have 1{t≤τ} measurable.

Remark VI.2.6. If G ∈ L2([0, T]), and τ is the stopping time such that 0 ≤ τ ≤ T, then:

• E
[∫ τ

0 GdBt
]
= 0.

• E
[(∫ τ

0 GdBt
)2
]
= E

[∫ τ
0 G2dt

]
.

⌟

Definition VI.2.7. σ-algebra Generated by Infinity Stopping Time.

Let J be a stopping time with respect to {Nt} and N∞ := σ ({
⋃

t>0 Nt}), then the σ-algebra Nτ =



SDEs. VI DIFFUSION MODELS 59

σ({Xτ∧t}) is consisted of all sets N ∈ N∞ such that N ∩ {τ ≤ t} ∈ Nt. ⌟

Theorem VI.2.8. Strong Markov Property for Itô Diffusions.

For a stopping time τ, we have the strong Markov property that:

Ex[ f (Xτ+h) | F
(m)
τ

]
= EXτ [ f (Xh)] for all h ≥ 0.

Moreover, if f1, f2, · · · , fk are bounded Borel function on Rn, and τ is an F (m)
t -stopping time, then:

Ex[ f1(Xτ+h1) f2(Xτ+h2) · · · fk(Xτ+hk
) | F (m)

τ

]
= EXτ [ f1(Xh1) f2(Xh2) · · · fk(Xhk

)]

for all hi ≥ 0 where 1 ≤ i ≤ k.

VI.3 The Generator of an Itô Diffusion

Definition VI.3.1. Infinitesimal Generator.

Let {Xt} be a time-homogeneous Itô diffusion on Rn, then the infinitesimal generator A of Xt is defined
by:

A f (x) = lim
t↘0

Ex[ f (Xt)]− f (x)
t

for x ∈ Rn.

In particular, the set of functions f : Rn → R such that the limit exists at x is denoted by DA(x). ⌟

Usually, we take C2(Rn) for DA(x) as the requirement.

Then, we will first see some consequences of the definition.

Theorem VI.3.2. Dynkin’s Formula.

Let f ∈ C2
0(R

n). Suppose τ is stopping time, Ex[τ] < ∞, then:

Ex[ f (Xτ)] = f (x) + Ex
[∫ τ

0
A f (Xs)ds

]
,

where Ex is the expectation with respect to the law Rx of Xt starting from x:

Rx[Yt1 ∈ F1, · · · , Ytk ∈ Fk] = P0[Yx
t1
∈ F1, · · · , Yx

tk
∈ Fk].

Theorem VI.3.3. Expression of Infinitestimal Generator.

Let Xt be Itô diffusion:
dXt = b(Xt)dt + σ(Xt)dBt,
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then:

A f (x) = ∑
i

bi(x)
∂ f
∂xi

(x) +
1
2 ∑

i,j

(
σ(x)σ⊺(x)

)
i,j

∂2 f
∂xi∂xj

(x).

Example VI.3.4. Infinitesimal Generator as Laplace-Beltrami Operator.

The n-dimensional Brownian motion {Bt}:
dXt = dBt,

where b = 0 and σ = Idn. So the generator of Xt = Bt is:

A f = 0 +
1
2 ∑

i,j
δi,j

∂2 f
∂xi∂xj

=
1
2 ∑

i

∂2 f
∂x2

i
.

Hence, A = 1
2 ∆, which is half of the Laplace-Beltrami Operator operator.k ⌟

The above example is an effective connection between SDEs and Laplace equation in PDEs.

Example VI.3.5. Infinitesimal Generator with Heat Operator.

Let {Bt} denote a 1-dimensional Brownian motion and X = (X1, X2) be the solution of:dX1 = dt, X1(0) = t0,

dX2 = dBt, X2(0) = x0,

i.e., dX = bdt + σdBt, X(0) = (t0, x0), where b = (1, 0) and σ = (0, 1).
Hence, we have:

A f =
∂ f
∂t

+
1
2

∂2 f
∂x2 ,

for f = f (t, x) ∈ C2
0(R

n), and hence is the heat operator in the heat equation. ⌟

This example is a connection between SDEs and heat equation in PDEs.

Example VI.3.6. Probabilistic Approximation of PDEs.

Let U ⊂ Rn be a smooth bounded domain and ∂U is smooth consider:−
1
2

∆u = 1, in U◦,

u = 0, on ∂U.

We claim u(x) = E[τx,U ] where τx,U is the first time Xx
t hits ∂U. ⌟



SDEs. VI DIFFUSION MODELS 61

Proof. By Dykin’s formula (Theorem VI.3.2), Au = 1
2 ∆u, we have:

E[u(Xτx)]−E[u(X0)] = E

[∫ τx

0

1
2

∆u(Xs)ds
]

.

Since 1
2 ∆u = −1, we get:

u(x)−E[u(Xτx )] = E

[∫ τx

0
1ds
]
= E[τx].

Hence, we have u(x) = E[τx].

Remark VI.3.7. Here, this can be done using a Monte Carlo approximation, considering a random
starting point within U◦ and let a random particle to get around. ⌟

Proposition VI.3.8. Itô Process Expectation.

Let Yt = Yx
t be an Itô process in Rn of the form:

Yx
t (ω) =

∫ t

0
u(s, ω)ds +

∫ t

0
v(s, ω)dBs(ω).

dYt = u(t, ω)dt + v(t, ω)dBt with Y0 = x,

where B is m-dimensional Brownian motion. Let f ∈ C2
0(R

n), and τ be the stopping time such that
Ex[τ] < +∞. Assume u, v are bounded, then:

Ex[ f (Yt)] = f (x) + Ex

[∫ t

0

(
∑

i
ui(s, ω)

∂ f
∂xi

(Ys) +
1
2 ∑

i,j
(vv⊺)i,j(s, ω)

∂2 f
∂xi∂xj

(Ys)ds

)]
.

Proof. Put Z = f (Y) and apply Itô lemma, we have:

dZ = ∑
i

∂ f
∂xi

(Y)dYi +
1
2 ∑

i,j

∂2 f
∂xi∂xj

(Y)dYidYj

= ∑
i

∂ f
∂xi

(Y)uidt + ∑
i

∂ f
∂xi

(Y)(vdB)i +
1
2 ∑

i,j

∂ f
∂xi∂xj

(Y)(VdB)i(vdB)j.

Note that:

(vdB)i(vdB)j =

(
∑
k

vi,jdBk

)(
∑
h

vj,hdBh

)
= ∑

k
vi,kvj,kdt.

This gives that:

f (Yt) = f (Y0) +
∫ t

0

(
∑

i
ui

∂ f
∂xi

+
1
2 ∑

i,j
(vv⊺)i,j

∂2 f
∂xi∂xj

)
ds + ∑

i,k

∫ t

0
vi,k

∂ f
∂xi

dBk.

Hence, we have:

Ex[ f (Xτ)] = f (x) + Ex

[∫ t

0

(
∑

i
ui

∂ f
∂xi

+
1
2 ∑

i,j
(vv⊺)i,j

∂2 f
∂xi∂xj

)
ds

]
+ ∑

i,k
Ex
[∫ t

0
vi,k

∂ f
∂xi

dBk

]
.



SDEs. VI DIFFUSION MODELS 62

We want to show that the last expectation is zero.
If g is a bounded Borel measurable function such that |g| ≤ M, then for all ℓ ∈ N:

Ex
[∫ τ∧ℓ

0
g(Ys)dBs

]
= Ex

[∫ ℓ

0
1{s≤τ}g(Ys)dBs

]
= 0.

Moreover, we have:

Ex

[(∫ τ

0
g(Ys)dBs −

∫ τ∧ℓ

0
g(Ys)dBs

)2
]
= Ex

[∫ τ

τ∧ℓ
g2(Ys)ds

]
≤ M2Ex[τ − τ ∧ ℓ]→ 0 as ℓ→ ∞,

and hence we have the desired part to be zero.

Then, we can think of Theorem VI.3.2 and Theorem VI.3.3 as the corollaries of the above proposition.

Proof of Theorem VI.3.3. Directly from Proposition VI.3.8 by setting:

u(t, ω) = b
(
Xt(ω)

)
, v(t, ω) = σ

(
Xt(ω)

)
.

Proof of Theorem VI.3.2. Consequence of Proposition VI.3.8 by replacing A f (Xs) as generator.

Example VI.3.9. Green’s Formula for Harmonic PDE.

Let U ⊂ Rn be a smooth bounded domain and g : ∂U → R a continuous function. Consider:∆u = 0, in U◦,

u = g, on ∂U

Let Xt(ω) = Bt(ω) + x. Then u(x) = E[g(Xτx )], where τx is the first time such that X hits ∂U.
Then, we have that:

E[g(Xτx )] = E[u(Xτx )] = E[u(X0)] + E

[∫ τx

0

1
2

∆u(Xs)ds
]

= E[u(x)] = u(x).

⌟

The main thing about the application is how to construct the stopping time model.

Example VI.3.10. Particle Escaping from Ball.

Consider n-dimensional Brownian motion B = (B1, · · · , Bn), starting at a = (a1, · · · , an) ∈ Rn, and
|a| < R, which is the expected value of first exit time τk of B from the ball:

K = Kr = {x ∈ Rn : |x| < R}.

Here, let n ∈ N be fixed and apply the Dykin’s formula with X = B, τ = ak = min{k, τk} = τk ∧ k, we
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have:

Ea[|Bσk |
2] = Ea[ f (Bσk )] = f (a) + Ea

[∫ σk

0

1
2

∆ f (Bs)ds
]

= |a|2 + Ea
[∫ σk

0
nds
]
= |a|2 + hEa[σk].

Then Ea[τk] =
1
n [R

2 − |a|2]. So for k↗ ∞, we have Ea[τk] < ∞.
Note that when the dimension is big, it takes less time to approach the boundary.
Then, consider |b| > R, what is the probability that B starting at b ever hits K?
Let αk be the first exit time from the annulus, we have:

Ak = {x : R < |x| < 2kR},

and we put:
Tk = inf{t > 0 : Bt ∈ K}.

x

y

Ak
B0

pk
qk

Figure VI.1. Brownian motion escaping from the annulus Ak.

Let f = fR,k be C2 with compact supremum and if R ≤ |x| < 2kR. Eventually, we conclude that:

f (x) =

− log |x|, when n = 2,

|x|2−n, when n = 3.

It should be noticed that this is the solution to ∆ f = 0 in Ak.
Then, by the Dynkin’s formula, we have:

Eb[ f (Bσk )] = f (b).

As we put pk = Pb[|Bσk = R] and qk = Pb[|Bσk | = 2kR].

• For n = 2, we get that:

− log R · (1− qn)− (log R + k log 2)qk = − log |b|

− log k + log Rqk − log Rqk − k log 2qk = − log |b|

qk =
log |b|

k log 2 + log k
↘ 0 as k↗ ∞.
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Thus, we have that:
Pb[τk < ∞] = 1,

i.e., the Brownian motion is recurrent in R2.

• For n > 2, we have:
pkR2−n + qk(2

kR)2−n = |b|22− n.

Hence, as k↗ ∞, we have:

Pk = Pb[τk < ∞] =

(
|b|
k

)2−n
,

i.e., the Brownian motion is transient in Rk for k > 2.

In particular:

• When n = 2, the Brownian motion is recurrent.

• When n ≥ 3, the Brownian motion is transient.

Hence, for a random walk, it is almost surely to return in R2 (like a drunk man), but not in higher dimensions
(like a drunk bird). ⌟
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VII Topics in Diffusion Theory

VII.1 Kolmogorov’s Backward/Forward Equation

Let Xt be Itô diffusion in Rn with generator A, we choose the function f ∈ C2
0(R

n) with τ = t in Dynkin’s
formula, and we see that:

u(t, x) = Ex[ f (Xt)] = f (x) +
∫ t

0
E[A f (Xs)]ds,

and it is a diffusion with respect to t and:

∂u
∂t

= Ex[A f (Xt)] = AEx[ f (Xt)] = Au.

Theorem VII.1.1. Kolmogorov’s Backward Equation.

Let f ∈ C2
0(R

n), with u defined as above, then u(t, ·) ∈ DA for all t and:
∂u
∂t

= Au, for t > 0, x ∈ Rn,

u(0, x) = f (x), for x ∈ Rn.

Moreover, if ω(t, x) ∈ C1,2(R×Rn) is bounded and satisfies the PDEs, then ω(t, x) = u(t, x).

Here, we can think of A as an operator acting on u, and the argument argues about existence and unique-
ness of the solution.

Proof. (Existence:) Let g(x) = u(t, x), then since t 7→ u(t, x) is differentiable, we have:

Ex[g(Xr)]− g(x)
r

=
1
r

Ex[Exr [ f (Xt)]−Ex[ f (Xt)]
]

=
1
r

Ex[Ex[ f (Xt+r) | Fr]−Ex[ f (Xt) | Fr]
]

(Markov & towering property)

=
1
r

Ex[ f (Xt+r)− f (Xt)] (Towering property)

=
u(t + r, x)− u(t, x)

r
=

∂

∂t
u(t, x).

Here, we consider, the left hand side as:

Ex[g(Xr)]− g(x)
r

= Ag(x) = Axu(t, x).

(Uniqueness:) Assume that ω(t, x) ∈ C1,2(R×Rn) and it satisfies the PDE, then:

Ãs,xω = −∂ω

∂t
+ Axω = 0 for t > 0 and x ∈ Rn,

and ω(0, x) = f (x) for x ∈ Rn.
We fix (s, x) ∈ R×Rn, we define the process Yt in Rn+1 by:

Yt = (s− t, X0,x
t ),
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and then Yt has the generator Ã, by Dykin, we ahve:

Es,t[ω(Yt∧τR)] = ω(s, x) + Es,x
[∫ t∧τR

0
Ãs,xω(Yr)dr

]
,

where τR = inf{t > 0 : |Xt| ≥ R}.
Then, as R↗ ∞, we get:

Es,x[ω(Yt)] = ω(s, x).

By choosing t = s, this implies that:

ω(s, x) = Es,x[ω(Ys)] = E[ω(0, X0,x
s )]

= E[ f (X0,x
s )] = Ex[ f (Xs)] = u(s, x).

Remark VII.1.2. Differential Operator Notation.

Here, we have:

Au(x) = L(x, D)u(x) = ∑
i

bi(x)
∂u
∂xi

(x) +
1
2 ∑

i,j

(
σ(x)σ⊺(x)

)
i,j

∂2u
∂xi∂xj

(x),

where L(x, D) is a differential operator. ⌟

Remark VII.1.3. Backwards/Forward Probability for Markov Process.

We consider X has a transition probability density p(t, x, y).

0 X0

t Xt

0 X0

t Xt

0 X0

t Xt

Figure VII.1. A trajectories (left) from 0 of X0 to t of Xt with forward (middle) and backward (right) equation.

The (backwards) density equation satisfies that:

∂t p(t, x, y) = L(x, Dx)p(t, x, y) for all t > 0 and y ∈ Rn.

Here, we have L∗
(
y, Dyu(y)

)
as the adjoint of L(x, Dx), that is:

L∗
(
y, Dyu(y)

)
= −∑

i

∂

∂yi

(
bi(y)u(y)

)
+

1
2 ∑

i,j

∂2

∂yi∂yj

(
(σσ⊺)i,j(y)u(y)

)
.

⌟

Remark VII.1.4. Commutativity of Operator.

Here, we can assume the transition measure of Xt with density pt(x, y), i.e., having that:

u(t, x) = Ex[ f (Xt)] =
∫

Rn
f (y)pt(x, y)dy.
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Then, we can have that:

Au = Ax

∫
Rn

f (y)pt(x, y)dy =
∫

Rn
f (y)Ax pt(x, y)dy.

Here, in particular, we can consider A as the partial derivative operator, so:

∂u
∂t

=
∫

Rn
f (y)

∂

∂t
Pt(x, y)dy,

and we can consider that for all y ∈ Rn that:

∂

∂t
pt(x, y) = AxPt(x, y). ⌟

Remark VII.1.5. Forward Equation.

By Dynkin, we have that:∫
Rn

f (y)pt(x, y)dy = f (x) +
∫ t

0

∫
Rn

Ay f (y)ps(x, y)dyds

= f (x) +
∫ t

0
〈A f (·), ps(x, ·)〉L2(∂g) ds = f (x) +

∫ t

0
〈 f (·), A∗ps(x, ·)〉L2(∂g) ds,

where we consider the equation with the adjoint as:

A∗yϕ(y) = ∑
i,j

1
2

∂2

∂yi∂yj
[(σσ⊺)i,jϕ]−∑

i

∂

∂yi
(biϕ).

Here, we note that:
Ay f (y) = b(y) f ′(y) + a(y) f ′′(y),

and with a = 1
2 σ2, we have:∫

R
[b(y) f ′(y) + a(y) f ′′(y)]pt(x, y)dy =

∫
R
[b(y)pt(x, y)] f ′(y)dy +

∫
R
[a(y)pt(x, y)] f ′′(y)dy

= −
∫

R

∂

∂y
[b(y)pt(x, y)] f (y)dy +

∫
R

∂

∂y
[a(y)pt(x, y)] f (y)dy.

Hence, we have that:
∂

∂t
pt(x, y) = A∗y pt(x, y) for all x, y ∈ Rn and t > 0. ⌟

Example VII.1.6. Semilinear Hear Equation.

Consider the following PDE:
∂u
∂t

=
1
2

β2x2 ∂2u
∂x2 + αx

∂u
∂x

, for t > 0, x ∈ R,

u(0, x) = f (x), for x ∈ R, f ∈ C2
0(R).

Here, we suppose that u is a good function, and we want:

Au(x) =
1
2

β2x2 ∂2u
∂x2 + αx

∂u
∂x

,
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where we want to find the diffusion as:

b(x) = βx and σ(x) = αx,

which is:
dXt = αXtdt + βXtdBt,

and we notice that this is exactly in Example V.1.5 of Geometrical Brownian motion, and the solution is:

Xt = X0 exp
[(

α− β2

2

)
t + βBt

]
.

Here, by the backwards equation, we have:

u(t, x) = Ex[ f (Xt)] = E[ f (Xx
t )] = E

[
f
(

x exp
[(

α− β2

2

)
t + βBt

])]
.

Here, we consider the transition density of the Brownian motion as:

pt(x, y) =
1√
2πt

exp
(
−|x− y|2

2t

)
,

so we have the density as:

u(t, x) = E

[
f
(

x exp
[(

α− β2

2

)
t + βBt

])]
=
∫

R
f
(

x exp
[(

α− β2

2

)
t
])

pt(0, y)dy

=
1√
2πt

∫
R

f
(

x exp
[(

α− β2

2

)
t
])

exp
(
−|x− y|2

2t

)
dy.

Also, just to note, as t↘ 0, we have pt(x, y)→ δ(y− x). ⌟

VII.2 Resolvent Operator

Definition VII.2.1. Resolvent Operator.

For α > 0, g ∈ Cb(R
n), we define the resolvent operator Rα by:

Rαg(x) = Ex
[∫ ∞

0
e−αtg(Xt)dt

]
. ⌟

Proposition VII.2.2. Properties of Resolvent Operator.

Let g ∈ Cb(R
n), then the resolvent operator satisfies that:

1. Rαg is a bounded continuous function.

2. Let g be a lower bounded measurable function and define u(x) = Ex[g(Xt)]:
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• If g is lower semi-continuous, i.e., for all x0, there exists a sequence xn → x0 such that:

lim inf
n→∞

f (xn) ≥ f (x0),

then u is also lower semi-continuous.

• If g is bounded continuous, then u is continuous.

These properties lead to stronger statement of the invertibility of the operator.

Theorem VII.2.3. Identity of Operators.

1. If f ∈ X2
0(R

n), then Rα(α− A) f = f for all α > 0.

2. If g ∈ Cb(R
n), then Rαg ∈ DA, and (α− A)Rαg = g for all α > 0.

Proof. 1. If f ∈ C2
0(R

n), then:

Rα(α− A) f (x) = (αRα f − Rα A f )(x)

= α
∫ ∞

0
e−αtEx[ f (Xt)]dt−

∫ ∞

0
e−αtEx[A f (Xt)]dt

= −e−αtEx[ f (Xt)]

∣∣∣∣∞
t=0

+
∫ ∞

0
e−αt d

dt
Ex[ f (Xt)]dt−

∫ ∞

0
e−αtEx[A f (Xt)]dt

= Ex[ f (X0)] = f (x).

2. Suppose g ∈ Cb(R
n), then by the Markov property:

Ex[Rαg(Xt)] = Ex
[

EXt

[∫ ∞

0
e−αsg(Xs)ds

]]
= Ex

[
Ex
[

θt

(∫ ∞

0
e−αsg(Xs)ds

)
| Ft

]]
= Ex

[
Ex
[∫ ∞

0
e−αsg(Xt+s)ds | Ft

]]
= Ex

[∫ ∞

0
e−αsg(Xt+s)ds

]
=
∫ ∞

0
e−αsEx[g(Xt+s)]ds,

where θt denotes the shift operator, shifting Xs to Xt+s.
Here, we have, by definition that:

A(Rαg) = lim
t→0

1
t
[
Ex[Rαg(Xt)]− Rαg(x)

]
.

Then, we use integration by parts to obtain that:

Ex[Rαg(Xt)] = α
∫ ∞

0
e−αs

∫ t+s

t
Ex[g(Xν)]dνds

= lim
t→0

1
t

{
α
∫ ∞

0
e−αs

∫ t+s

t
Ex[g(Xν)]dνds

∂

∂t
G(t, x)

∣∣
t=0 − α

∫ ∞

0
e−αs

∫ s

0
Ex[g(Xν)]dνds

}
Hence, we have A(Rα, g) = αRαg− g.
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VII.3 The Feynman-Kac Formula

We can find a generalization of the Kolmogorov’s backward equation.

Theorem VII.3.1. Feynman-Kac Formula.

Let f ∈ C2
0(R

n) and q ∈ C(Rn). Assume q is lower bounded. Put v(t, x) = Ex
[
exp

(
−
∫ t

0 q(Xs)ds
)

f (Xt)
]
,

where Xt is an Itô diffusion with generator A, then v(t, x) satisfies the PDE:
∂v
∂t

= Av− qv, when t > 0, x ∈ Rn,

v(0, x) = f (x), for x ∈ Rn.

Moreover, if w(t, x) ∈ C1,2(R×Rn) is bounded on K×Rn for each compact K ⊂ R, and w solves the PDE,
then w(t, x) = v(t, x).

Proof. (Existence:) Let Yt = f (Xt) and Zt = exp
(
−
∫ t

0 q(Xs)ds
)

, then:

dZt = −Ztq(Xt)dt and so d(YtZt) = YtdZt + ZtdYt.

Next, we consider ∂
∂r v(r, x):

1
r
[
Ex[v(t, Xr)]− v(t, x)

]
=

1
r
[
ExEx[Zt f (Xt)]−Ex[Zt f (Xt)]

]
=

1
r

{
ExEx

[
exp

(
−
∫ t

0
q(Xss + r)ds

)
f (Xt+r)

∣∣∣∣Fr

]
−Ex[Zt f (Xt) | Fr]

}
=

1
r

Ex
[

Zt+r exp
(∫ r

0
q(Xs)ds

)
f (Xt+r)− Zt f (Xt)

]
=

1
r

{
Ex[Zt+r f (Xt+r)− Zt f (Xt)] + Ex

[
f (Xt+r)Zt+r exp

(∫ r

0
q(Xs)ds− 1

)]}
→ ∂

∂t
v(t, x) + Ex[ f (Xt)Zt]q(x).

Hence, we have the left part as:

Av =
∂

∂t
v + qv.

(Uniqueness:) Here, we consider the new generator as:

Âw(t, x) = −∂w
∂t

+ Aw− q(w),

with the new process Ht = (s− t, X0,x
t , Zt).

Remark VII.3.2. When q ≡ p, we can consider A = 1
2 ∆ as the Laplacian, so:

∂u
∂t

=
1
2

∆u + ρu, for t > 0, x ∈ Rn,

u(0, x) = f (x), for x ∈ Rn.
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By the Feynman-Kac theorem, we have:

u(t, x) = Ex
[

exp
(∫ t

0
ρds
)

f (Bt)

]
= E[exp(ρt) f (Bx

t )] = eρt 1
(2πt)n/2

∫
R

exp
(
− (x− y)2

2t

)
f (y)dy.

⌟

Example VII.3.3. Feynman-Kac for Laplace Equation.

Suppose U is a domain with smooth boundary. Consider the PDE:−
1
2

∆u + cu = f , in U◦

u = 0, on ∂U.

We have the Feynman-Kac representation as:

u(x) = E

[∫ τx

0
f (Xt) exp

(
−
∫ t

0
c
(
X(s)

)
ds
)

dt
]

,

and so we have Xt = Bt + x for x ∈ U◦, and τx as the first hitting time of Xt on ∂U. ⌟

Remark VII.3.4. Feynman-Kac Backward Equation.

Let f ∈ C2
0(R

n) and q ∈ C(Rn), and assume that q is lower bounded. Consider:
∂w
∂t

+ Aw = cw + f , for x ∈ Rn, t ∈ [0, T],

w(x, T) = ϕ(x), for x ∈ Rn.

Then, the Feynman-Kac indicates that:

w(x, t) = Ex,t
[

ϕ(Xt) exp
(
−
∫ T

t
q(Xs)ds

)]
−Ex,t

[∫ T

t
f (Xs) exp

(
−
∫ s

t
q(Xu)du

)
ds
]

.

In particular, this has more application in finance, related to price option. ⌟

In particular, Feynman-Kac is the generalization of the Kolmogrov property, and it is Kolmogrov when
q ≡ 0.

VII.4 The Martingale Problem

Consider the Itô diffusion X = {Xt}t≥0 that:

dXt = b(Xt)dt + σ(Xt)dBt.
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The Itô generator is given by A and we have:

f (Xt)− f (x) =
∫ t

0
A f (Xs)ds +

∫ t

0
ν f ⊺(Xs)σ(Xs)dBs.

Note that the generator is:

Au(x) = ∑
i

bi(x)
∂u
∂xi

(x) +
1
2 ∑

i,j
(σσ⊺)i,j

∂2u
∂xi∂xj

.

Here, we can define:

Mt = f (Xt)−
∫ t

0
A f (Xs)ds = f (x)− f (x)−

∫ t

0
∇ f ⊺(Xs)σ(Xs)dBs.

Since the Itô integrals are martingales, we have for all s > t that:

Ex[Ms | F (m)
t ] = Mt.

Here, F (m)
t = σ({Bs : s ≤ t}). Moreover, if we considerMt = σ({Xs : s ≤ t}), thenMt ⊂ F (m)

t .

It follows that:
Ex[Ms | Mt] = Ex[Ex[Ms | F (m)

t ] | Mt
]
= Ex[Mt | Mt] = Mt,

by using the towering property, the martingale property of Ms with respect to F (m)
t , and measurability of

the function.

Theorem VII.4.1. Martingale with respect to Itself.

If Xt is an Itô diffusion in Rn with generator A, then for all f ∈ C2
0(R

n), the process:

Mt = f (Xt)−
∫ t

0
A f (Xs)ds

is a martingale with respect toMt.

Recall that if we identify each ω ∈ Ω with the function:

ωt = ω(t) = Xx
t (ω),

we can set the probability space (Ω,M, Qx) is identified with
(
(Rn)[0,∞),B, Q̃x), and we can reformulate

Theorem VII.4.1.

Theorem VII.4.2. Generealization of Martingle with respect to Itself with Measure Space.

If Q̃x is a probability measure B induced by the law Qx of an Itô diffusion Xt, then for all f ∈ C2
0(R

n), the
process:

Mt = f (Xt)−
∫ t

0
A f (Xs)ds
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is a Q̃x-martingale with respect to the σ-algebra Bt = σ({(Rn)[0,t]}).

Definition VII.4.3. Martingale Problem.

Let L be a semi-elliptic differential operator of the form:

L = ∑
i

bi
∂

∂xi
+ ∑

i,j
ai,j

∂2

∂xi∂xj
,

where the coefficients bi, ai,j are locally bounded Borel measurable function Rn. Then, we say a probability
measure P̃x on

(
(Rn)[0,∞),B

)
solves the martingale problem for L if the process:Mt = f (ωt)−

∫ t

0
L f (ωs)ds almost surely with respect to P̃x,

M0 = f (x)

is a P̃x-martingale. ⌟

Remark VII.4.4.

• The Q̃x solves the martingale problem for the operator A.

• When Xt is a weak solution to the SDE:

dXt = b(X0)dt + σ(Xt)dBt,

then Q̃x solves the martingale problem associated with A if and only if Xt is a weak solution of the
above Itô diffusion.

• (Stroock & Varadhan, 1979; Rogers & Williams, 1987). Q̃x is the unique solution of the martingale
problem for the operator L given by:

L = ∑
i

bi
∂

∂xi
+

1
2 ∑

i,j
(σσ⊺)i,j

∂2

∂xi∂xj
.

• The Lipschitz-continuity of the coefficient of L is not necessary for the uniqueness. ⌟

VII.5 Itô Process and Diffusion

The question is now posed:

When is an Itô process a diffusion?

Example VII.5.1. The Bessel Process.

The process:

Rt(ω) = |B(t, ω)| =
(

n

∑
i=1
|Bi(t, ω)|2

)1/2
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such that the equation is:

dRt =
n

∑
i=1

Bi
Rt

dBt +
n− 1
2Rt

dt.

The process is a Itô process as it is with respect dBi and dt.
In terms of the diffusion theory, this does not seem like an Itô diffusion, since the dBt part function is with
respect to Bt and Rt.
However, we define:

Yt =
∫ t

0

n

∑
i=1

Bi
|B|dBt

d∼ 1-dimensional B̃t.

Hence, we have:

dRt = dB̃t +
n− 1

Rt
dt. ⌟

In this case, we can associate Rt with a generator:

A f (x) =
1
2

f ′′(x) +
n− 1

2x
f ′(x).

Theorem VII.5.2. Itô Process and Brownian Motion.

An Itô process:
dYt = vdBt, Y0 = 0 with v(t, ω) ∈ Vn×m

H

coincides in law with n-dimensional Brownian motion if and only if vv⊺(t, ω) = In for almost all (t, ω)-
dt× dP.

Up to here, we have only identified with a Brownian motion, not with an Itô diffusion yet.

Theorem VII.5.3. Itô Process and Diffusion.

Let Xt be an Itô diffusion given by:dXt = b(Xt)dt + σ(Xt)dBt, for b ∈ Rn, σ ∈ Rn×n,

X0 = x,

and let Yt be an Itô process given by:

dYt = u(t, ω)dt + v(t, ω)dBt.

Then {Xt} ' {Yt} if and only if b(Yx
t ) = Ex[u(t, ·) | σ({Ys : s ≤ t})] and vv⊺(t, x)(Yx

t ).

Note that here, we want to fundamentally have u(t, ω)→ b(Yt) and v(t, ω)→ σ(Yt).

Remark VII.5.4. Let {Yt} be Itô process as above, then there exists some Nt := σ({Ys : s ≤ t})-adapted
process w(t, ω) such that:

vv⊺(t, ω) = w(t, ω).
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Hence, this explains why the second expectation is not conditional, as it is adapted. ⌟

In general, however, u(t, ·) and v(t, ·) are not measurable with respect to Nt.

VII.6 The Girsanov Theorem

The main point of Girsanov theorem is that the diffusion does not have that much of an impact.

Theorem VII.6.1. Lêvy Characterization of Brownian Motion.

Let X(t) =
(
X1(t), X2(t), · · · , Xn(t)

)
be a continuous stochastic process on (Ω,H, Q) with values in Rn.

Then the following are equivalent:

1. X(t) is a Brownian motion with respect to Q.

2. X(t) is a martingale with respect to Q and Xi(t)− Xj(t)− δi,jt is a martingale with respect to Q for
all i, j ∈ {1, 2, · · · , n}.

Then, we consider the following abstraction of Bayes’ rule.

Proposition VII.6.2. Conditional Bayes’ Rule.

Let µ and ν be two probability measure on (Ω,G) such that:

dν(ω) = f (ω)dµ(ω)

for some f ∈ L1(µ), i.e.,
∫

Ω f dµ = 1.
Let X be a random variable on (Ω,G) such that:

Eν[|X|] =
∫

Ω
|X(ω)| f (ω)dµ(ω) < +∞.

Let H be a σ-algebra. Then:
Eν[X | H] ·E[ f | H] = Eµ[ f X | H].

Note that is Eµ[ f | H] is nonzero, we have:

Eν[X | H] =
Eµ[ f X | H]

Eµ[ f | H]
.

Proof. Here, we have:
ν(dω) = f (ω)µ(dω).
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If H is σ-algebra, then for all H ∈ H:∫
H

Eµ[ f | H]dµ =
∫

H
f dµ = ν(H),

hence we can equivalently say that ν |H= Eµ[ f | H]µ |H.
Hence, we have:

Eν[1HX] = Eµ[1H f X] = Eµ

[
1HEµ[ f X | H]

]
= Eµ

[
1H

Eµ[ f X | H]

Eµ[X | H]
·Eµ[ f | H]

]
= Eν

[
1HEµ[ f X | H]

]

Definition VII.6.3. Absolutely Continuous Measure.

Let (Ω,F , {Ft}, P) be a filtered probability space. Fix T > 0 and let Q be another probability measure on
FT , we say Q is absolutely continuous with respect to P |FT , denoted Q � P, if:

P(H) = 0 =⇒ Q(H) = 0 for all H ∈ FT . ⌟

By Radon-Nikodym theorem, there exists a FT-measurable random variable ZT(ω) ≥ 0 such that:

dQ(ω) = ZT(ω)dP(ω) on FT ⇐⇒
dQ

dP

∣∣∣∣
Fi

= ZT .

Proposition VII.6.4. Weak Potential Converse of Girsanov Theorem.

Suppose Q � P |FT , and dQ
dP

= ZT on FT , then Q |Ft� P |Ft for all t ∈ [0, T].
We define:

Zt =
dQ |Ft

dP |Ft

=:
dQ

dP

∣∣∣∣
Ft

,

then Zt is a martingale with respect to Ft and P.

Proof. For any F ∈ Ft, then:

EP

[
1FEP[ZT | Ft]

]
= EP

[
EP[1FZT | Ft]

]
= EP[1FZT ]

= EQ[1F] = E¶[1FZt].

Hence, we have Zt as a martingale and:
EP[Zt | Ft] = Zt

almost surely on P |Ft .

Theorem VII.6.5. Girsanov Theorem.

Let Y(t) ∈ Rn be an Itô process:

dY(t) = a(t, ω)dt + dB(t) for t ≤ T and Y(0) = 0.
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We define:
M(t) = exp

[
−
∫ t

0
a(s, ω)dB(s)− 1

2

∫ t

0
a2(s, ω)ds

]
for 0 ≤ t ≤ T.

Assume that M(t) is a martingale with respect to F (m)
t and P. We define a probability measure Q on F (m)

T
with:

dQ(ω) = MT(ω)dP(ω).

Then, Q is a probability measure on F (m)
T , and Yt is an n-dimensional Brownian motion with respect to Q

for 0 ≤ t ≤ T, that is, on (Ω,F ,Nt, Q).

Remark VII.6.6. Girsanov theorem states that for all F1, · · · , Fk ⊂ Rn and t1, · · · , tk ≤ T, we have:

Q[Y(t1) ∈ F1, · · · , Y(tk) ∈ Fk] = P[Y(t1) ∈ F1, · · · , Y(tk) ∈ Fk].

Particularly, we consider:

Lt :=
dQY
sPB

∣∣∣∣
Ft

= µt = exp
[
−
∫ t

0
a(s)dYs +

1
2

a2(s)ds
]

,

which is called a likelihood process. ⌟

Example VII.6.7. Maximum Likelihood Estimate for the OU process.

Consider the OU process:
dXt = −αXtdt + dWt,

where we have α unknown. Given {Xt}t∈[0,T], how do we estimate α? By Girsanov, we can have the
maximum likelihood (MLE). By the Girsanov, we have:

Mt = exp
[
−α

∫ T

0
XtdXt −

α2

2

∫ T

0
X2

t dt
]

Then, we consider the MLE:

Lt =
dPX
dPW

∣∣∣∣
Ft

= −α
∫ T

0
XtdXt −

α2

2

∫ T

0
X2

t dt.

Then, we have that:
∂Lt

∂α
= 0,

hence leading to:

α̂ = −
∫ T

0 XtdXt∫ T
0 X2

t dt
=

1
2 (X2

T − X2
0 − T)∫ T

0 X2
t dt

.

In fact, if we want to find α, we have:

α =
−
∫ T

0 XtdXt +
∫ T

0 XtdBt∫ T
0 X2

t dt
.

Hence, we consider here the right component as the unbiased part. ⌟
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Another example could be the problem of unknown parameter for:

dXt = αdt + dWt

with α being unknown. Given {Xt}, we want to estimate α, and we have the solution like:

Xt = αt + Wt.

Proposition VII.6.8. Partual Converse of Girsanov.

Suppose Q � |P|FT with dQ
d¶ = ZT on FT , then Q

∣∣
Ft
� P

∣∣
Ft

for all t ∈ [0, T] and Zt =
dQ
∣∣
Ft

dPFt
is a

martingale with respect to Ft and P.

Here, we give the proof of Girsanov theorem .

Proof of. Since Mt is martingale, E[Mt] = E
[
E[MT | Ft]

]
= E[Mt] = E[MT ], then:

Q(Ω) = EQ[1] = EP[MT ] = 1.

Hence Q is a probability measure. Without loss of generality, we assume that a(s, ω) is bounded. We need
to verify that:

1. Y(t) is a martingale with respect to Q, and

2. Yi(t)−Yj(t)− δi,jt is also martingale with respect to Q.

To verify 1, we put k(t) = µ(t)Y(t) and use the Itô formula to obtain:

dKi(t) = M(t)dYi(t) + Yi(t)dµ(t) + dYi(t)dµ(t)

= M(t)

[
dBi(t)−Yi(t)

n

∑
k=1

ak(t)dBk(t)

]
= M(t)Y(i)(t)dB(t).

Here, we have:

Y(i)
j (t) =

{
−Yi(t)aj(t), i 6= j,

1−Yi(t)aj(t), i = j.

Hence, Ki(t) is martingale with respect to P.
Then, by the Bayes’ rule, we get:

EQ[Yi(t) | Fs] =
E[M(t)Yi(t) | Fs]

EP[M(t) | Fs]
=

E[Ki(t) | Fs]

M(s)
=

Ki(s)
M(s)

= Yi(s).

Hence, Yi(t) is a martingale with respect to Q.

Remark VII.6.9. Recall the Novikov condition is sufficient to guarantee that {Mt}t≤T is a martingale:

E

[
exp

(
1
2

∫ T

0
a2(s, ω)ds

)]
< +∞.
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Also, note that since Mt is a martingale, we have that:

MTdP = MtdP on F (n)
t .

Hence, by Girsanov, we have that for all F1, · · · , Fk ⊂ Rn and t1, · · · , tk, hence:

Q[Y(t1) ∈ F1, · · · , Y(tk) ∈ Fk] = P[B(t1) ∈ F1, · · · , B(tk) ∈ Fk],

which leads to:

dQY
dPB

= MT on F (n)
T = Mt on F (n)

t

= exp
[
−
∫ t

0
a(s, ω)dBs −

1
2

∫ t

0
a2(s, ω)ds

]
= exp

[
−
∫ t

0
a(s, ω)dYs +

1
2

∫ t

0
a2(s, ω)ds

]
.

⌟

End of the notebook ♣
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