AS.110.653 : Stochastic Differential Equations
Practice Problem Sets
James Guo

Spring 2025

Contents

I Problem Set 1
I Problem Set 2
III Problem Set 3
IV  Problem Set 4
V  Problem Set 5
VI Problem Set 6
VII Problem Set 7

VIII Problem Set 8

12

18

22

33

37

40

¢ The pratice problem sets are practices for AS.110.653 Stochastic Differential Equationsinstructed by

Dr. Xiong Wang at Johns Hopkins University in the Spring 2025 semester.

— Dr. Wang has really dedicated a lot into designing and executing the class. We greatly appreci-

ate his instructions throughout the course and his assistance in tackling on these problems.
¢ Exercises numbers refer to the course textbook [Jksendal]:

— Stochastic Differential Equations: An Introduction with Applications by Bernt Jksendal.

¢ The solutions might contain minor typos or errors. Please point out any notable error(s) through

this link.


https://james-guo-03.github.io/contact_notes.html
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I Problem Set1

Problem 1.1. (Exercise 2.1 on [Jksendal]). Suppose that X : (3 — R is a function which assumes only
countably many values aq,4a;,--- € R.

(a) Show that X is a random variable if and only if:

X Yay) € Fforallk=1,2,--- . (1)

Proof. Here, note that X assumes only countably many values 43,4, - - - € R, and denote the set of these
points as X(Q), for any open set U C R, its preimage X! (U) must be a subset of X(Q), i.e., X~ 1(U) C
X"1(X(Q)). Now, let I C N be a indexed set in which a; € U, then the preimage of U is simply the
countable union X1 (U) = Uje; X (7).

Recall that for a o-algebra, if a sequence of set is in it, its countable union must be still in it. Note that X(Q)
is countable, it is discrete (or not containing an interval in R, which making it uncountable), so for any 4;
where j € IN*, there exists some € > 0 such that a; ¢ Ne(a;) for all k # j. By such, we know that X being
a random variable is equivalent to saying that X~!(U) € F for all open set U C R, which is equivalent
to saying that X~ !(U;cj)a; € F for all possible I € P(IN*), which is equivalently to X~!(a;) € T for all
k € Z*, as desired. O

(b) Suppose (1) holds, show that:
E[|X]] = }_ [a[IP[X = ay]
k=1

Proof. Now, as we shall evaluate the expectation, while X(Q}) is countable, we have:

BX]) = [ 1X(@)| aPw) = [ o] dP(x}(@))
— ¥ alP(X @) = ¥ ladPlX = ag),
aeX(Q) k=1
as desired. m

(c) If (1) holds and E[|X|] < oo, show that:

]E[X} = i ak]P[X = Ilk].
k=1

Proof. By (1) and E[|X|] < oo, we know that |X(w)| is integrable, then, we may evaluate the integral

without the absolute value sign (which is not necessarily positive):

/QX(aJ) dP(w) = /X(Q)a dP (X~ 1(a))
= Y aP(X ') = 3 ;i P[X = ay].
aeX(Q) k=1

E[X]
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Note that based on the definition of Lebesgue integration, a function is integrated on the positive and
negative parts, respectively, so we must enforce convergence in absolute value (absolute convergence) for
the integral to be well defined. O

(d) If (1) holds and f : R — R is measurable and bounded, show that:

[eo)

E[f(X)] = }_ f(a)P[X = ay].

k=1

Proof. First, we need to show that E[|f(X)|] is finite. Since f is bounded, there exists some C € R" such
that |f(x)| < C for all x € R. Moreover, since f is measurable, and X(Q) is discrete, then f(X(Q)) is
discrete (thus measurable) and for any x € f(X(Q)), f ~1(x) is measurable, hence, we have the expectation
as:

B0l = [ If(X(@)] dP@) = [ If@)] dP(x (@)

- ¥ |f<a>|1P<X*1<a>>=iwmx:ak]

aeX(Q) k=1

<CZIP =ar] =C < 0.

Hence, it is integrable, so we may find the expectation without absolute value sign, that is:

= /Qf(X(w)) dP(w) = [ fla) dP(X (@)

X(Q)

= Y flpP(X ()= I;f(”k)]P[X = agl,

2eX(Q)

which finishes the proof. ]

Problem 1.2. (Exercise 2.3 on [Qksendal]). Let {H;};c; be a family of o-algebras on Q). Prove that:

H=({Hi:iel}

is again a o-algebra.

Proof. First, we note that each c-algebra contains @, hence their intersection shall still contain @.

Now, for any F € H, we know that F € H; forall i € I, then F¢ € H, for all i € I, thus F® € H.
Eventually, let {F,},cn+ C H be an arbitrary sequence, then {F,},cn+ C #H; foralli € I, then U,cn+ Fi €
‘H; for all i € I, hence the countable union is in H.

Thus, H is a c-algebra. O
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Problem 1.3. (Exercise 2.4 in [Jksendal]).
(a) Let X : O — R" be a random variable such that:
E[|X|P] < oo for some p,0 < p < oo.
Prove Chebychev’s inequality:
P[X| > A] < %EHXV"] forall A > 0.

Hint: [ |X|P dP > [, |X|P dP, where A = {w : |X| > A}.

Proof. Here, we first note that A C (), so we trivially have:
/ IX|PdP > / IX|? dP,
Ja JA

by the monotonicity measure of subsets.

Then, we may build an inequality as:
/ IX[P dP > / IX|P dP = / X (w)|? dP(w)
QO A A
> / AP dP(w) = /\7’/ dP(w) = APP(A) = APP[|X] = A].
A A

Then, by dividing both sides with A¥, we now have:

1 1
P|{|X]| > < — X|P dP = —IE[|X|P

which completes the proof. O
(b) Suppose there exists k > 0 such that:
M = Elexp(k|X])] < co.

Prove that P[|X| > A] < Me * for all A > 0.

Proof. Here, can first note that since exp(—) is monotonic, so:
P[IX| > A] = P[|exp(k|X])| > ¢].
Since we assume that M = E[exp(k|X|)] < oo, we can apply part (a) with p =1 as:
Pllexp(X])| 2 ] < i El|exp(k|X))]] = g Elexp(k|X])] = M,
and it combines with the previous equality as:
P[|X| > A] < Me ¥,

as desired. 0
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Problem 1.4. (Exercise 2.6 in [Jksendal]). Let (Q), F,P) be a probability space and let Ay, Ay, - - - be sets
in F such that:

i ]P(Ak) < o0.
k=1

Prove the Borel-Cantelli lemma:
P ( N U Ak> =0,
m=1k=m

i.e., the probability that w belongs to infinitely many Ay’s is zero.

Proof. First, we note that N7,_; Up,, Ak is a countable intersection of countable union of measurable set,
hence N;,—1 Ur—,, Ax € F, i.e.it is measurable.
Then, note that the infinite sum } ;> ; IP(Ax) < oo, then for any € > 0, there exists some m > 0 such that:

[ee)

Z I[)(Ak) < €.

k=m

Thus, we can note that by the fact that an intersection is a subset and by the countable additivity of

measure, we have:

P (ﬁ U Ak> <P ([‘j Ak> <e

Now, since IP (5,1 Ur—,, Ax) < € for all € > 0, we have:

P (mﬁl ka Ak> =0,

which completes the proof of the Borel-Cantelli lemma. O

Problem 1.5. Prove Lebesgue’s dominance convergence theorem under assumption “convergence in
probability.” You can apply the version under assumption “convergence almost surely.”

Here, we first recall Lebesgue’s dominance convergence theorem:

Theorem. Suppose {f,}7_; is a sequence of measurable functions such that f,(x) — f(x) for a.e. x,

asn — oo. If | f(x)| < g(x), where g is integrable, then:

/|fn—f|—>0asn—>oo,

and consequently:

/fn—>/fasn—>oo.

To consider this under the “convergence in probability,” the theorem becomes:
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Theorem. Suppose {X,}:’ ; is a sequence of random variables X; : QO — R such that X, L, X,
where X : ) — R is a random variable, as n — oo. If |X,| < Y, for random variable Y : Q) — R,
where E[|Y|] < co, then:

E[| X, — X|] = 0as n — oo,

and consequently:
E[X,] — E[X] as n — oo.

Proof. Let € > 0 be arbitrary, we define:

Qe :={we Q:|Xy(w) — X(w)| <€},

and correspondingly:
Q¢ ={we Q: | Xy(w) — X(w)| > €}

By the definition of convergence in probability, there exists some n € N such that P[|X,, — X| > €] <€,
so we have P(Q)¢) < e with arbitrarily large n.

Also, since E[|Y]] < oo, we note that |Y| must be bounded a.e., that is |Y| < k for some k € R a.e.

Then, we want to decompose our expectation as:

B[~ XI) = [ Xa(w) - X(@)| dP(w)
= [, 1Xulw) = X(w)] dPw) + [ [Xn(w) = X(w)| dP(w)
< P(Qe)e+/mz|y(w)| AP (w)
<1-€+2ke < (2k+1)e.

Thus, as n — oo, E[|X,, — X|] < (2k+ 1)e for all € > 0, so E[| X, — X]|] — 0.
Afterwards, we shall note that:

IE[X,] — E[X]| = |E[X, — X]| < E[|Xs — X|] — 0as n — oo,

so we have E[X,,| — E[X] as n — oo. O
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I Problem Set 2

Problem IL.1. (Exercise 2.17 on [Jksendal]). If X;(-) : Q3 — R is a continuous stochastic process, then for
p > 0 the p-th variation process of Xy, (X, X)ﬁp ) is defined by:

(p) 1 _ P
(X, X)) (w) = Altfgo t;,t |th+1 (w) — X, (w)’

as the limit in probability where 0 = t; <t < --- <t; = n and Aty = ty;q — f;. In particular, if p =1,
this process is called the total variation process and if p = 2, it is called the quadratic variation process. For
Brownian motion B; € R, we now show that the quadratic variation process is simply:

(B, B)1(w) = (B, B)®(w) = t as.

(a) Define:
ABy = By, — By,
and put:
Y(t,w) = Y (AB(w))>.
<t
Show that:

]EKZ(ABk —tﬂ— 2 Aty)?,

te<t

and deduce that Y(t,-) — t in L2(P) as At; — 0.

Proof. Here, we first recall the property of Brownian motion so that:
ABg ~ N (0, typ1 — ) = N(0, Aty).

Here, we note that the Brownian motions are independent, so we have:

B (S n 1) | =] (s -7 = T El(an2 -1

<t t<t <t
= Y E[(ABx)* —2t(ABy)* + £].
<t
Recall the fourth moment being 304 = 3(Atk)2, the second moment as 02 = Aty, so we have the expectation

as:

2
E K Y (ABy)? - t) } = 3(At)? = 2(At)? + (At)? = 2(Ak)2.

<t

Hence, as we consider the expectation as integral, we have:

/Q ( Y (AB(w))? — t)z dP(w) — 0 as Aty — 0,

<t

so we have L2 convergence that Y(t,) := Ztkgt(ABk(w))z — t, as required. O
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(b) Use (a) to prove that a.a. paths of Brownian motion do not have a bounded variation on [0, t], i.e.
the total variation of Brownian motion is infinite, a.s.

Proof. First, we may obtain the inequality that:

Y |ABy(w) = )

<t B<t

BBy (@) 1

[AB(w)[ = sup, _ [AB(w)] Y. [ABu(w) 2.

<t

Again, note that we want Aty — 0, then we have |AB(w)| — 0 for all t, < t, thus:

1) . . 1 2
(B,B)M(w) = lim ¥ |ABy(w)| > lim |ABy(w)|
f At—0 tkzgt A0 supy < [AB(w)] tkzgt
1 1
— (B,B)!? (w) lim —t lim — 4o,
(B,B);" () A0 supy < [AB(w)| a0 supy o [ABi(w)|
Hence, we have the total variation of the Brownian motion being infinite almost surely. O

Problem II1.2. (Exercise 2.18 on [Jksendal]).
(a) Let O = {1,2,3,4,5} and let U be the collection:
U ={{1,2,3},{3,4,5}}

of subsets of (). Find the smallest c-algebra containing I/, i.e., the c-algebra H;; generated by U.

Solution. From the beginning, the o-algebra must contain the empty set and its compliment, {®, Q}.
Then, consider the sets in the collection and their (countable union), we have:

{2,{1,2,3},{3,4,5},{1,2,3,4,5} = Q}.
Then, consider the complimentary sets, we must have:
{2,{1,2,3},{3,4,5},Q,{4,5},{1,2} },
while this would have created another union and a compliment, so we have:
{@,{3},{1,2},{4,5},{1,2,3},{3,4,5},{1,2,4,5},Q}.

Now, one can verify that the above collection contains ¢/, has the empty set, compliments, and countable

unions, so the o-algebra is:

Hy =|{2,{3},{1,2},{4,5},{1,2,3},{3,4,5},{1,2,4,5},Q} |
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(b) Define X : (3 — R by:

Is X measurable with respect H;,?

Solution. . By Problem 1.1(a), since we have a (at most) countable image, we can check the preimage

of each single value of output. Note that:
X10)={1,2} € Hy, X 110) = {3} € Hy, and X7 1(1) = {4,5} € Hy,

so X is ‘H-measurable. a

(c) Define Y : (3 — R by
Y(1) =0, Y2)=Y(3)=Y4)=Y(5) =1

Find the o-algebra Hy generated by Y.

Solution. Here, we may note that the preimage is discrete, so we consider the collection:
y = {{1}1 {2/3/4/ 5}}/

and our solution is the o-algebra generated by Y, namely:

Hy =|{2,{1},{2,3,4,5},Q} |

Problem IL3.  Suppose {Z;}{°, are independent N (0,1) random variables. Show that |Z,(w)| =
O(y/log(n)) as n — co almost surely.
Hint: You may need Borel-Cantelli lemma.

Proof. Here, we construct our set of events { Ax}> ;. We let:

Ap = {w € Q:|Z| > 2\/logk}.
Then, we note that:
P(Ay) = 2P(Z > 24/logk) = 1 —erf(y/2logk),

and we want to show that } > ; P(Ay) < +oo.
Here, we first notice that P(A5) é 0.095891 < 0.25 = 1/22, and we take their derivatives as:

2 d \/2logk _p
e

d
ﬁ[l—erf(\/Zlogk)] =~ Rk Jo dt
2 1 2/ T
— —~_ exp(—2logk) - - _ .
= p(=2logk) ky/2logk  k3\/logk
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Note that when we take the derivative of 1/k? with respect to k, we obtain —2/ k3, in which we have:

df[1] _ 2 2/ym _d
dkM 6 b iost = k! erf(y/2logk)] for k > 0.

Hence, we may conclude that:
1

]P(Ak) < 2

for all k > 2.

Hence, we have:

(e} (e} (e} 1
k_zllp(Ak) < l+k¥21P(Ak) < 1+k_21k—2 < +oo,

by the convergence of harmonic series, so our sets Ay satisfies the condition Borel-Cantelli lemma.

Now, since {Z;}? ; is independent, we have:

]P(limsup(Ak)) =P < ﬁ D Ak) =0,

k—o0 m=1k=m

which means that:
P{we Q:|Zy(w)| >2y/logk}) — 0as k — oo,

which implies that | Z;(w)| < 24/logk for all w € O\ N where N is a null set, and hence:

|Zy(w)| < 2¢/lognasn — oo as.,

which completes the proof. O

Problem I1.4. Let {B;};>( be one-dimensional Brownian motion.

(a) Find the density of the random vector (B, B;) where 0 < s < t < co.

Solution. Here, for the density function, we are able to express the probability as:

P(Bs € Fi,B € F) = /F o p(s,x)p(t —s,y — x)dxdy
M | 2

1 |x|2> 1 ( Iy—xlz)
_ et B I - dxd
FixF \/27Ts P ( 2s 27t(t —s) P 2(t - S) Y

1 |x[? Iy—x|2>
= _— - dxdy.
FixE 27T4/s(t —5) P ( 2s 2(t—s) Y

Hence, the density function is:

(s,t,x,y) = 1 <—|x’2—|y_x|2)
pro by 27t4/s(t —s) P 25 2(t—s) /)| |
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(b) Find the conditional density of the vector (Bs, Bf) where 0 < s < t < 1 under the condition B; = 0.

Solution. Here, we consider the conditional probability as:

]P(BS €F,BieF,B; = O)
P(B, = 0)

IP(BS €F,Bre kR, | By 20) =

Hence, the density function will be given as:

p(s, x)p(t —s,y —x)p(1—t0—y)
p(1,0)

p(s t,x,y) =

2 ly—s|?

l% \/ﬁ &P (720—5)) ' \/27r1(17t) P (72(%/‘—20)
e (F)

_ 1 I A . s
| o2nx s(t—s)(l—t)exp< 25 2(t—s) 2(1—’5))'

(c) Consider the process X; = e~*/2B. Find the probability density of (X, -+, Xt,)-

Solution. Again, the vector of the Brownian motion is the random vector of a multi-normal distribution,
that is:
(Bewl/ BeMZ/ Tty Bgafn ) ~ N((O/ 0/ e /0>/ Z')/

where T € R"™" is a positive definite variance matrix, now we consider the exponentials, so the distribu-

tion would be:
(Xt -+, Xe,) ~N((0,0,---,0), %),

hence, so the density function is:

1
- -1/2 _Z T
p(th,H.,th)NN((O’O’M,0)(xl,xz, ,Xn) =| 27| X exp( 2(x1, X0 ) TE(xq, ,xn)) )

Problem IL5. Let {X,},>1 be a sequence of independent random variables on the probability space
(Q, F,P) with mean 0 and variance ¢?. Denote F, = c{X;,1 < k < n}. Let {Z,},>1 be a square-
integrable process predictable with respect to F, (i.e., Z,1 is F,-measurable).

(a) Show that Y;, = Y}, Z; X is a square integrable martingale.

Proof. First, we want to show that Y;, is square integrable, for each finite n, it is a finite sum of random
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variables, so we can reduce to the case of showing that Z; Xj is square integrable. Consider that:

Jo 1) Xeteo) Paeo = | Zefeo) Xeleo) P + | 124(w) Xi(w) P

we:|w|<6} we:|w|>6}

1Z4 () Pdw + Ca / X, () Pdew.

C
= /{weQ:\w\Sé} {we:|w|>d}

Note that with choice of §, Z; will become bounded for larger then J as it is square integrable, and X will
be bounded for smaller than ¢ as it has mean of 0, hence the function is still square integrable.

For the martingale part, fir any n > 1 and j > n, we have the conditional expectation as:

j k j
E[Y; | Yy, Y =Y E[ZX; | Yo, W] =Y ZX;+ Y, ZE[X] =Y,
] 1 1 1 1 1 1
i—1 i=1 i=k 1

hence we have shown that Y, is martingale.

Therefore, {Y;} is a sequence of square integrable martingale. O

(b) Show that E[Y,] = 0 and that E[Y2] = 02 Y }_; E[Z2].

Proof. Here, we may consider the expectation based on the different measure of X:

n n n . .
E[Y,] = } E[ZX)] = Z/ Zi Xy dP =) (/ Zr d]P-/ Zi Xy d]P) =0.
k=1 k=177 k=1 \/Fn S Fu
Then, we consider the second moment as (by independence):
n n n
E[Y7] = Var[Y,] = Y Var[Z,] Var[X,] = Y ¢*E[Z}] = o* }_ E[Z}],
k=1 k=1 k=1

which finishes the proof. O

(c) Let us assume Z; = % Is the martingale {Y}, },>1 uniformly integrable?

Solution. Here, we may observe from (b) that we would have Y;, having expectation and variance as:
n
E[Y,] = 0and E[YZ] = ¢ ) E[Z3].
k=1
Hence, as n — oo, we have E[Y?] < +oo converging. Therefore, when we consider:
lim sup {/ |Yi|d]P} ,
Mmoo i1 LNYilzm

where we have P(|Y;| > m) — 0 as m — oo, and so the limit is zero and the martingale is uniformly

integrable. a
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IIT Problem Set 3

Problem III.1. (Exercise 3.1 on [Jksendal]). Prove directly from the definition of It6 integrals that:

t t
/ sdB, = By — / B.ds.
0 0

ZA(Sij) = ZSjABj ot ZB]‘+1AS]‘.
] ] ]

Hint: Note that:

Proof. Here, from the definition, we note that s is already an elementary function, so we may consider the
partition such that At — 0:

t t
[ s = 5By = Y A(siB) — Y Bjiads; = tBi — | Buds,
0 , - . 0
] ]

]

as desired. O

Problem IIL.2. (Exercise 3.5 on [Jksendal]). Prove directly that:
M;=B?—t
is an JF;-martingale.
Proof. First, we want to show that the process is integrable, i.e., for any fixed ¢ > 0:
E[|Mi|] = E[|B — t]] = E[|x*() — t]] < +oo.

Then, we suppose any s < ¢ fixed, and recall that Brownian motions are martingale, let:

]E[Mt|fs] :]E[B%_”-Fs] :]E[B%I}—s]_t
= E[(B; — Bs)*> +2BiBs — B2 | F&] —t
= E[(B; — Bs)? | Fs| + E[2B;Bs | Fs] — E[B? | Fs] — ¢
= (t—s) +2BsE[B; | Fs] —B? —t =B? —s = M,
so M; is an F;-martingale. O

Problem IIL.3. (Exercise 3.7 on [Jksendal]). A famous result of Itd (1951) gives the following formula for
n times iterated It0 integrals:

n!/--- </ </dBu1)dBu2> . .dBy, = t3h, <\%) @)

0<uy <---<uy<t
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where hy, is the Hermite polynomial of degree n, defined by:

Y
hn(x):(—l)ezdxn<e 2>; n=20,1,2---.
Thus ho(x) = 1, hi(x) = x, hp(x) = x> — 1, h3(x) = x®> — 3x.

(a) Verify that in each of these n It6 integrals, the integrand satisfies the requirements for V.

Proof. Here, we note that h,(x) is integrable, and we have:

falt ) = ot o (05 )

we want to show:

e (t,w)— f(t,w) is B x F measurable.
Note that for &, is measurable over B x F, so it is good.

* f(t,w) is Fy-adapted, i.e., w — f(t,w) is Fy-measurable.
Again, h;, is measurable of F with fixed w, so it is good.

e E UOTf(t,w)zdt] < +oo.
We have: .
E {/0 f(t,w)zdt} < nT? < +oo.

Hence, the integrands satisfies the requirements of being V. O

(b) Verify formula (2) forn =1,2,3.

Proof. * (n = 1:) We have:

1'/tdB _ B =i Bt
[ b, T

t BZ
2!/ BudeuzzBft:t(tf1>
J0

e (n = 2:) We have:

e (n = 3:) We have:

t /1 1 t t t t
3!/0 (2353 - 2u3> dBy, :3/0 B2 dB,, —3/0 13dBy, = B?—3/0 Bu3du3+3tBt—3/0 Budus

<B? _3Bt)
3 .
t2 \ﬁ 0

NI

= B} —3tB; =t
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(c) Use (b) to prove that N; = Bf’ — 3tB; is a martingale.

Proof. Note that It6 integrals are martingale, and since B} — 3tB; is an Ito integral, it is martingale.

Problem II1.4. Compute:

(a)

t
E {BS / BrdBr} .
0

Solution. Here, we have:

t
E [Bs/ B,dBr] =E [Bs : %(B% - t)} = %1}3[3533 —tBg] = %IE[BSBf] - %tIE[BS] = %]E[Bst].
0

Now, we consider two distinctive cases for IE[B;B?]:
e (s < t:) We have:
21 _ 2 _ p3 2p 1 2 3 2
E[BsB;] = E[Bs(Bt — Bs)” — By + 2B;B;] = E[Bs]EE[(B; — Bs)“] — [E[B7] + 2IE[B: By]
=0-(t—s) —0+2E[B2B;] = 2E[BBy]
= 2E[B2(B; — Bs) + B3] = 2E[B2]E[B; — Bs] + 2E[B}] =2-5-04+0 = 0.
e (s > t:) Otherwise, we have:

[E[BsB?] = E[B?(Bs — B;) 4+ B} = E[B?|E[Bs — B;] + E[B}] = -0+ 0 = 0.
Hence, we have the expectation evaluated as @

(b)
E

¢ 2
(Bs/ B,dB,) ] where s < t.
0

Solution. Here, we have:

t 2 1 2l
(Bs/ B,dB,) =E (BS-Z(B%t)) = EE[BE(B#Z#B%#)]
0
1 1 1 1
= Z]E[B§B;L —2t*B2B? + 1°B2] = Z]E[BgB;*] - Etz]E[BﬁB%] + 1tZJE[Bsz]
1 1 1
= ZIE[BS?B;*] - EtZ]E[Bfo] - ths.

Now, we investigate the two respective expectations.

O
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e For [E[B?B?], we have:
E[B2(B; — Bs)> — B + 2B2B;] = E[B?|E|[(B; — Bs)?| — E[B%] + 2E[B2B]

E[B? B}
) — 3s% 4 2IE[B3(B; — Bs) + B] = s(t —s) — 3s* + 2E[B3(B; — Bs)] + 2E[Bj]

s(t

(t—s
s(t—s) —3s2+2-0-(t —s)+2-3s% = st 4 25°.

* For [E[B2B}], we have:
IE[B2B}] = E[B2(B; — Bs)* +4B? B2 — 6B?B2 + 4B, B2 — BY]
= EE[BZ (B: — Bs)"] + 4E[B} BY] — 6E[B} B{] + 4E[B, B — E[B]
=5-3.(t—s)? +4E[B} B3] — 6E[B?B%] + 4E[B;B2] — 155°
= 3t%s — 6ts? — 125° 4 4E[B}BY] — 6IE[B?B2] + 4E[B;B].

Now, we have to evaluate the next terms:

— For [E[B;B?], we have:
[E[B;B:] = E[B3(B; — Bs) + B8] = 155°.

— For E[B?B2], we have:

[E[B?B] = E[B%(B; — Bs)? + 2B2B; — B] = 35> - (t —5) + 305> — 15s5% = 3ts? + 125>,

— For E[B}B2], we have:

E[B} B3] = E[B2(B; — B;)* + 3B:B} — 3B]B; + BE]
= 0+ 3(3ts® +125%) — 3(155%) + 155> = 9ts> + 65°.

Now, we can combine all the calculations together:
IE[B2B}] = 3t%s — 6ts* — 125% + 4(9ts? + 65%) — 6(3ts? 4 125%) + 4(155%)

= 3t%s + 1252

Hence, we may conclude that:

E

t 2l 1 1 1
Bs / BydB, ) | = = (3t%s + 12ts%) — Zt?(st +25%) + %5 = | t2s + 3ts* — ~st° + %1% |,
Jo 4 2 4 2 .

Problem IIL.5. (Exercise 3.17 on [Jksendal]). Let (Q), F,P) be a probability space and let X : O — R be a
random variable with E[|X|] < co. If G C F is a finite o-algebra, then there exists a partition Q = ' ; G,

such that G consists of @ and unions of some (or all) of Gy, - - - , Gy,.

(a) Explain why E[X | G](w) is constant on each G;.
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Proof. Here, we may consider G as a random variable, namely:

n
G= Zﬂiﬂci, where G; € G.
i=1

Then, the conditional expectation for each given w € G; is:

X|g Z aj; ]1(; = a]
O
(b) Assume that IP[G;] > 0. Show that:
f G, XdP

E[X | Gl(w for w € G;.
Proof. Here, we just need to verify that:

Xle XdP Xd]P

/ E[X | G](w / fc _fc,. /dl[’ fc /Xd]P
Gi P(Gi) Ja P(G;

so it satisfies the condition for conditional expectation. O

(c) Suppose X assumes only finitely many values ay, - - - , 4;;. Then from elementary probability theory:
X|G Zak]P —uk|G1’].

Compare with (b) and verify that:
E[X | G] = E[X | G](w) for w € G;.

Thus, we may regard the conditional expectation as defined as a (substantial) generalization of the
conditional expectation in the elementary probability theory.

Proof. Here, consider w € G; being arbitrary, we have:

Jo, XdP — ym g P(X = ax Aay € Gy)

P(Gi) B P(G;)
Z agP(X =a,ANay € G))

B IP(Gi)

E[X | G)(w) =

m
Zﬂkﬁ’ =a | G) =E[X |G,

so the general definition is aligned to the elementary probability theory definition. O
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Problem II1.6. (Exercise 3.18 on [DJksendal]). Let B; be 1-dimensional Brownian motion and let o € R be
constant. Prove directly from the definition that:
1,
M; == exp aBt—E(ft ; t>0

is a martingale.
Hint: If s > t, then Elexp(cBs — 30%s) | Fi] = E[exp (c(Bs — By)) x exp(cB; — 30?s) | F].

Proof. Here, by the hint, we may notice that:
1
E[M; | Fi] =E {exp ((TBS - 202s> | ]—"t]
=E {exp (0(Bs — Bt)) - exp (O'Bt — ;O‘ZS) | ]-'t}
=E[exp (0(Bs —By)) | ] - E [exp (0’Bt — ;(725> | J-"t]
15 1,
=exp | 50 (s—t))-exp —507s -E[exp(0Bt) | Ft]
=exp <—;azt) -exp(oBt)
1,
=exp | 0B; — 57 t] = M.
Moreover, we consider the expectation of M;, namely:
1, 1,
exp UBt_EUt =E |exp (TBt—EUt

= exp (—ia%f) Elexp(cBt)] = exp (—iazt) exp (;ﬁt) =1 < +oo.

EllMi)) — |

Hence, we have shown that M; is martingale. O
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IV Problem Set 4

Problem IV.1. (Exercise 4.1 on [Jksendal]). Use It6’s formula to write the following stochastic processes
Y; in the standard form:
dYy = u(t,w)dt + v(t,w)dBy

for suitable choices of u € R", v € R"*" and dimensions n, m:

(a) Y = Btz, where B; is 1-dimensional.

Solution. Here, we note that:
t t
Y; = B? = / ds+2/ BsdBs,
JO 0

hence it is in standard form as:

(b) Y; =2+t + B, where B; is 1-dimensional.

Solution. Here, we may apply It6 formula, namely:

2

J 2+t 4 eBr)dt + aa 24t +eBi]dB; + 1o

i =5 2 9x2

24t + eB1](dB;)?

=dt +ePdB, + Eerdt = (1 + ;e ) dt + ePtdB, |.

(c) Y; = B3(t) + B3(t), where (By, B) is 2-dimensional.

Solution. Here, we may apply the general It6 formula as:

i = S (B0 + B0l + o (B} (0) + BR(IB1 + 5 [BR() + B3(1)aB+
1 92 2, 1 2

aZ

2 2 2 2 2

25 B0+ BB+ 2 S 1B3(0) + BRI+ g5 (B0 + B0 @By
= 0dt + 2B1dBy + 2BodBy + dt + dt + 05y rdt

= [2dt + 2By (1)dBy (1) + 2B (1)dBa(1) |

(d) Y; = (tp +t, Bt), where B; is 1-dimensional.

Solution. Here, we need to consider the process component-wise, denoted Y; = (Yt(l), Yt(z)).
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For th, we have:

d 19
[to + t]dB; + [to + £] (dBt) =dt.

[to+t]dt+ 3B, 2832

For Yt(z), we have:
0 d 10
d(y?) = a[BAdt+—aB[BJdBt+»zaB2U%KdBQ = dB,.

Hence, the process can be written in standard form as:
1
ay; = dat + 0 dB; |
0 1 .

() Yy = (By(t) + Ba(t) + Bs(t), B3(t) — B1(t)Bs(t)), where (By, By, B3) is 3-dimensional.

Solution. Again, we shall consider the process component-wise, denoted Y; = (Yt(l), Yt(z)).

For th, we have:

d d
B1 + By + B3]dBy + =—[B1 + B2 + B3|dBy + ——[B1 + By + B3|dB3+

1 0 d
ay, =3 [B1+B2+B3]dt+aB [ 35, 3B,
l—a [B + B —|—B](dB) 19 [B1 + B —|—B](dB) 19 [B1 + B +B](dB)
28B ! 2 3 ! 2E)B2 ! 2 3 2 2832 ! 2 3 3

[B1 + By + B3|dBdBs + B1 + By + B3]dB,dB;

0B, E)B[

d
[B1 + By + B3|dB1dBy + =——— aBlaB

38,95,
= dBl(t) + de(t) + dB3(i’)

For Yt(Z), we have:

) d J
dYt(Z) _ E[B% _ BlB3]dt + aiBl [B% — BlBg}dBl + TBZ[B% — B1B3}dB2 +

> aB% [BZ BlB3](dB1) + 5 832 [32 BlBg,](de) + 5 8B2 [Bz BlB3]<dB3) +

0
0B10B; 0B10B3 0B,0B3

= — B3dBq +2BydB, — B1dBs + (de) =dt — B3(i’)dB1(t) + 2B2( )de(t) — B1(i’)dB3(t).

d
8733[3% — By B3]dB3+

[B3 — B1B3]dBdBy + ——— B3 — B1B3|dB1dB3 + ——— B3 — By B3|dB,dBs

Hence, when we combine the process together, we have:

0 1 1 1
dy; = (1) dt + (_BS(t)> dBi(t) + (232(t)> dBy(t) + (—Bl(t)> dBs(t) |
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Problem IV.2. (Exercise 4.2 on [Dksendal]). Use Itd formula to prove that:

.t 1 t
/0 B2dB, — 53?—/0 Buds.

Proof. Here, we write B} in terms of differential form:

0
ot

[BY]dt + % [B?)dB; + =

1 92

dB} =
2 832

[BY](dB;)* = 3Bdt + 3B?dB;,
and hence if we were to write them in terms of standard form, we have:
t t
B = 3/ Beds + 3/ B2dB,,
0 0
and if we were to divide everything by 3 and move around, we have:

t 1 t
/0 BB, = B} - /O Buds,

as desired. 0

Problem IV.3. (Exercise 4.3 on [@ksendal]). Let X;, Y; be It6 processes in R. Prove that:
d(Xth) = X dY; + YidX; +dX; - dY;.

Deduce the following general integration by parts formula:

t t t
/ XodYs = XeYs — XoYo — / YdXs — / X, - dYs.
0 0 0

Proof. Here, we may use the general Itd formula to find the differential form as:

0 d d
d(Xth) T [Xth]df + = X, [Xth]dXt + == 3, [Xth]dYt+
1 92 1 92 02
3 55 XX 4 T @2 + s (XX

= YidX; + XpdYs + dXidYs.
Then, we can write the differential form in standard form:
t t t
X;Y; = XoYo + / YedX, + / XedYs + / dX; - dYe.
0 0 Jo
Then, we can move around the terms to get the integration by parts formula:

t t t
/ XodYs = X,Y; — XoYo — / Y.dX. — / X, - dY..
0 0 0
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Problem IV.4. (Exercise 4.4 on [Qksendal]). Exponential martingales.
Suppose 0(t,w) = (01(t,w), - ,0.(t,w)) € R" with 6 (t,w) € V[0, T] for k = 1,--- ,n, where T < co.
Define:

t t
Zi = exp [/ 0(s,w)dB(s) — %/ GZ(S,w)ds] g 0<t<T,
0 0
where B(s) € R" and 6% = 6 - 6 as the dot product.
(a) Use Itd’s formula to prove that:

dZt = Zt6<t, Cd)dB(t)

Proof. Here, we first consider another process X; such that:
1
dX; = 0(t,w)dB(t) — Eez(t,w)dt.
Here, we have Z; = exp(X;), and we use the It6 formula on a given process:

o exp (X)X, + 3 =2 fexp(X0)] (4X1)?

0
az; = [exp(Xt)]dt + ==
29X2

X
= 0dt + exp(X¢)dX; + %exp(Xt)(dXt)2
—Xf)dBlelef)dBlezdz
= exp( t)( (t,w) (t)_i (t,w) t> +§exp( t)( (t,w) (t)_i (t,w) t>
= exp(X;)6(t, w)dB(t) — %exp(Xt)()z(t,w)dt + %exp(xt)ez(t,w)(dB(t))L

L oXp(X0)6° (1, )aB (1)t + % exp(X1)04(t, ) (dt)?

= exp(X¢)0(t, w)dB(t) — %exp(Xt)Qz(t,w)dt + %exp(Xt)Gz(t,w)dt
= exp(X;)0(t,w)dB(t) = Z:0(t,w)dB(t),

as desired. 0

(b) Deduce that Z; is a martingale for t < T, provided that:

ZtGk(t,w) € V[O, T] forl <k <n.

Proof. By part (a), we note that Z; can be written as:
7.6, (t,w) / Z.0(t, w)dB(t / Zzsek (t, )dBy (1) 2/ 740 (1, )dBy (1).

Note that since Z;0;(t,w) € V[0, T] for all k, the integral fot Zs0k(t, w)dBy(t) must be martingale, and a
finite sum of martingale is still martingale. O
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V Problem Set 5

Problem V.1. (Exercise 4.13 on [Jksendal]). Let dX; = u(t, w)dt + dB;, where u € R and B; € R, be an It6
process and assume for simplicity that u is bounded. Then we know that unless u = 0 the process X; is not
an Fi-martingale. However, it turns out that we can construct an F;-martingale from X; by multiplying
by a suitable exponential martingale. More precisely, define:

Yy = Xi M,

where: N , L

¢ = exp <—/0 u(r,w)dB, — 5/0 u (r,w)dr> .
Use It6’s formula to prove that Y; is an F;-martingale.
Proof. Here, we think about the Itd formula on Y; by considering the product rule:

dYy = d(XeMy) = XedMy + Mid Xy + dXd My
Recall from Problem IV.4(a), we have:

dM; = —Mu(t,w)dBy,

and hence we can continue the product rule as:

dYy = XiMi ( — u(t,w)dBy) + M (u(t, w)dt + dBy) + (u(t,w)dt + dBy) My ( — u(t, w)dBy)
= —XyMyu(t, w)dB; + Myu(t, w)dt + MydBy — Myu(t, w)dt
= M; (1 — Xtu(t,cu))dBt.

Hence, the It6 formula of Y; contains to df terms, and recall from Problem 1V.4(b), since u is a It6 process,
so M; is martingale, thus E[|M;|] < +oc0. Consider for X; that:

E[|X/]] = E H/Ot u(r, w)dr + /Ot dB, }

<E H/Otu(r,w)dr} VE H/OtdBr

since u(r,w) is bounded and E[|B¢|?] = t, so we have E[|X;M;|] < E[|X|] - E[|[M¢|] < 400, hence have
proven that Y; is, in fact, a F; martingale. O

] <E [/Ot ]u(r,w)\dr} L E[|By]] < +oo,

Problem V.2. (Exercise 4.16 on [@ksendal]). If Y is an Fr-measurable random variable such that E[|Y|?] <
oo, then the process:
MtiZIE[Y‘]:t],' OStST

is a martingale with respect to {F; }o<t<T-
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(a) Show that E[M?] < oo for all t € [0, T].

Proof. Note we have F; as a c-algebra, so we have:
E[(E[Y | Fi]?] < E[Y?] < +oo,

as desired. ]

(b) According to the martingale representation theorem, there exists a unique process g(t,w) € V(0,T)
such that: ,
M; = E[Mo] + / ¢(s,w)dB(s);  te0,T).
0

Find g in the following cases:

1. Y(w) = B%(T).
2. Y(w) = B3(T).

3. Y(w) = exp (¢B(T)), where o € R is a constant.
Hint: Use that exp (¢B(t) — J0?t) is a martingale.

Solution.

1. Now, we have:
M; = E[B% | Fi].

Here, we decompose that:
2 _ _ 2_ 2 _ _p)\2
Bt = (Bt + (Br — Bt))” = Bf +2B:(Br — Bt) + (Br — Bt)?,
so we have the conditional expectation as:

E[B% | Fi] = E[B? 4 2B;(By — B;) + (Br — By)? | Fi]
= E[B? | i + 2E[B; | F{]E[Br — By | F] + E[(Br — B;)? | Fi]
= B? + 2B,E[B; — B;] + E[(Br — B;)?] = B> + T — t.

Then, we apply the It6 formula and obtain that:

dM; = —dt + 2B4dB; + % -2dt = 2BydBy,

hence we have g(s,w) = m

2. Now, we have:
M; = E[B3 | Fi,

and we similarly construct the decomposition as:

3
B} = (Bt + (Br — By))” = B} + 3B} (Br — B;) + 3B;(Br — B;)* + (B — B;)>.
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Now, we apply the conditional expectation as:

(B} | ] = E[B} + 3Bf(Br — B;) + 3B:(Br — By)* + (Bf — B)® | F]
= E[B} | Fi] + 3E[B? | F{|E[Br — B; | Fi
+3E[B: | FtJE[(Br — B)* | Fi] + E[(BF — By)® | Fi]
=B} +3B{(T—t)+3B?-0+T—t= B} +3TB; — 3tB;.

Then, we apply the It6 formula and obtain that:

1
dM; = —3B;dt + (3B + 3T — 3t)dB; + 5+ OBudt
=3(B? + T —t)dB;,

and hence we have g(s,w) =|3(B? + T —t) |

3. Here, we have:
M = Elexp(cBr) | Fi],

and we consider that:
exp(0Br) = exp (0(B; + (Br — Bt))) = exp(0Bt) exp (o(Br — By)),
and we hence have that:

Elexp(¢Br) | Ft] = Elexp(0Bt) exp (¢(Br — By)) | Fi]
= ]E[eXp(U'Bt) | .7'—}} . ]E[exp (O'(BT — Bt)) | ft]

oplon) np (ZL=0).

Hence, we apply It6 formula to obtain that:

2
1
dM; = M; ((;) dt + M; - 0dBy + EM;} co%dt = M; - 0dB;y,
o(T —t)
and hence we have g(s,w) =| cexp(cBy) - exp — )t
|

Problem V.3. (Exercise 5.7 on [Qksendal]). The mean-reverting Ornstein-Uhlenbeck process is the solution
X; of the stochastic differential equation:

dXt = (m — Xt)dt + O'dBt,
where m, o are real constants, and B; € R.

(a) Solve this equation using the integrating factor similar to e'.
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Solution. Here, we multiply by the integration factor that:
F = exp(t), and so dF; = exp(t)dt.
Then, we consider the product rule as:

d(F:X;) = BdX; + XedF; + dFdX;

= exp(t)((m — X;)dt + 0dBy) + exp(t) Xedt + exp(t)dt((m — X;)dt 4+ 0dBy)

= exp(t)mdt + exp(t)ocdBy.

Thereby, we write the equation in standard form:

t t t
EX; = FoXo + m/ exp(s)ds + (7/ exp(x)dBs = FoXo + m(exp(t) — 1) + (7/ exp(s)dBs,
0 0 0

t
exp(t) Xy = Xo +mexp(t) —m+ (7/ exp(s)dBs,
0

t
Xi = | Xoexp(—t) +m —mexp(—t) +(7/ exp(s — t)dBs |
0

(b) Find E[X;] and Var[X;] := E[(X; — E[X{])?].
Solution. For the expectation, we have:
t
E[X;] =E [Xo exp(—t) +m—mexp(—t) + 0’/ exp(s — t)st}
0

= Xpexp(—t) +m —mexp(—t)+cE {/Ot exp(s — t)st}

deterministic, 0

= ‘ Xoexp(—t) +m — mexp(—t) ‘

For the variance, we hence have:

Var[X;] := E[(X; — E[X{])?] = E

(0’ /Ot exp(s — t)st>2
( /O exp(s — t)st>2

= o’E

[
I
qI\)
<D\H_
o
X
o
—~
N
—~
(%
I
—~
SN—
~
u
1%

(1—exp(—2t)) |

exp (2(s - t>>r‘* 2 (1 B exp(—zt>> [
2 T2




Stochastic Differential Equations Problem Set V Guo 26

Problem V.4. (Exercise 5.8 on [Jksendal]). Solve the (2-dimensional) stochastic differential equation:

dX1 (1) = Xo(t)dt + adBy (1)
dXo(t) = — Xy (t)dt + BdBs ()

where (B (t), By(t)) is 2-dimensional Brownian motion and «, 8 are constants.

This is a model of a vibrating string subject to a stochastic force.

Solution. Here, we denote X(t) := (Xq(t), X»(t)) and B(t) := (B1(t), B2(t)), so our differential equation

becomes:
ax(t) = (_01 é) X(8)dt + <g 2) dB(1).

Here, we shall use the integrating factor that:

n
0 1 Xm0 1
F t = t = — .
o=eo (5 o)=L (5 0)
We note that the matrix has order 4, that is:
2 3 4
0 1 -1 0 0 1 0 -1 0 1 1 0
= , = , and = .

-1 0 0o -1 -1 0 1 0 -1 0 01

Hence, we have the matrix exponential as:

F(t) = Zn€[0]4 anu - Zne[2]4 %nn Zne[1]4 % - Zne[3]4 % [ cost sin t
(t) - " 1 mn n — .
YnePBly a1 — Lne[lly

Lneloly m — Lnel2ly 0] —sint cost

Hence, we have the solution as:

X(t) = F(1)X(0) + F(t) /Otp(_s> (g Z) Byds

[ X1(0)cost + X5(0) sint n /t cost sint cos(—s) sin(—s)\ {a O0) [dBi(s)
~ \=X1(0)sint 4 X»(0) cos t 0 \—sint cost/) \ —sin(—s) cos(—s)/ \O B/ \dBa(s)
[ X1(0)cost + X>(0) sint n /t acos(t—s) Bsin(t—s)\ [dBi(s)
~ \=X1(0)sint 4 X»(0) cos t 0 \—asin(t—s) Bcos(t—s)) \dBy(s)/)

Hence, we have the solutions, respectively, as:

t t
X, (f) = Xl(O)cost+X2(0)sint+1x/0 cos(t—s)dBl(s)+ﬁ/0 sin(f — s)dBa(s) |

Xa(t) = | —X1(0) sint + X(0) cos t + —a /Otsin(t—s)dBl(s)—l-,B/ot cos(t — s)dBy(s) |
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Problem V.5. (Exercise 5.16 on [Jksendal]). For more general nonlinear stochastic differential equation

of the form:
dXy = f(t, Xp)dt +c(t)XidB;,  Xo = x, 3)

where f : R xR = R and ¢ : R — R are given continuous (deterministic functions).

(a) Define the “integration factor”:

F = F(w) = exp (— /Otc(s)st + % /Ot cz(s)ds> .

Show that (3) can be written as:
d(F:X;) = F - f(t, X;)dt. 4

Proof. Here, let’s first derive dF; using Itd formula with dX; = 1c2(t)dt — c(t)dBy:

dF = F (dX + 2(dX)2) = B (2(8)dt — c(t)dBy ) + SE2(1)dt = F(R(H)dt — c(t)dBy).
(x4 j00x?) = z < )

Therefore, we have the product rule resulting in:

d(F:Xt) = FdX¢ + XidFr + dFd Xy
= F(f(t, X¢)dt + c(t)XedBy) + X, Fr (P (t)dt — c(t)dBy)
+ F(c(t)dt — c(t)dBy)dB; (f(t, X;)dt + c(t) X;dB;)
= Ff(t Xy)dt,

as desired. O

(b) Now define:
Y (w) = F(w) X (w)

so that:
X; = F Y, ©)
Deduce that equation (4) gets the form:
dYi(w _
zti(t ) _ F(w) - f(t F Y (w)Yi(w)), Yy = x. (6)

Note that this is just a deterministic differential equation in the function t — Y;(w), for each w € Q.
We can therefore solve (6) with w as a parameter to find Y;(w) and then obtain X;(w) from (5).

Proof. Here, from part (a), we have:
d(F(w)Xi(w)) = Bf(t, Xp)dt = Bf (t, F7H(w) X (w))dt,

which completes the proof when dividing both sides by dt. O
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(c) Apply this method to solve the stochastic differential equation:
1
adX; = ?dt—FDCXtdBt, Xo=x>0,
t
where « is constant.

Solution. Here, we have the integrating factor as:

t 1t t a2t p
Ft:exp(—/oast—l—z/(]ocds):exp(—a/O st—i-Z/Ods):exp(—tht—l—zt).

Then, by (b), let Y; := F; X;, we have that:

dYt . 14 1
= exp (—aBi+5t) - eI

=Y

Hence, this becomes a trivial ODE, that is:

Y, dY; = dt, and the solution is Y; = /2t + YZ.

Therefore, we can deduce X; as:

X; =|exp (uth— %t) V2t +x2 |

(d) Apply the method to study the solutions of the stochastic differential equation:
dXy = X]dt +aXidB;,  Xo=x>0,
where « and <y are constants.

For what values of ¥ do we get explosion?

Solution. Here, we still have the integrating factor as:

t 1t , ot a2 ot a
F =exp (/0 ochS+§/0 o ds) = exp (ac/o st+?/O ds) = exp (—aBt+§t).

Then, by (b), let Y; := F;X;, we have that:

% = exp (—oth + gt) (exp (—uth + %t) Yt)v = exp ((—oth + %t) (1 —1—7)) Yt'y.

Again, this is still a separable ODE, and we have:
Y v, _ @
Y, dY; = exp (( aB; + 2t> (1—|—’y)) dt.
However, we note have a closed-form solution, and the solution is:

y, — { (fot exp ((—aBs+ 5s) (1+)) ds(1 — 7))771 when v # 1
exp ( fy exp ((—aBs + §s)) ds) when 7 = 1.
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Hence, we have that:

-1
X exp (aB; — §t) (fotexp((—och—l-%s) (1+7)) ds(1—7)> when 7 # 1
t =
exp («B; — 5t) exp (fot exp ((—aBs+ 5s)) ds) when y = 1.
Note that the solution would explode when 7y > 1. J

Problem V.6. (Exercise 5.17 on [Jksendal]). The Gronwall inequality.
Let v(t) be a nonnegative function such that:

o(t) < C—l—A/OtU(s)dsforO <t<T

for some constants C, A, where A > 0. Prove that:
v(t) < Cexp(At) for0 <t <T.
Hint: We may assume A # 0. Define w(t) = fot v(s)ds. Then w'(t) < C + Aw(t). Deduce that:
by considering f () := w(t) exp(—At).
Proof. Consider that w(t) = fot v(s)ds, so by using Leibniz rule, its derivative is:
w'(t) =o(t) <C+ A/Otv(s)ds = C+ Aw(t).
Then, we consider f(t) := w(t) exp(—At), and we take its derivative using the product rule:
f'(t) = w'(t) exp(—At) — Aw(t) exp(—At) = exp(—At) (w'(t) — Aw(t)) < Cexp(—At).
Again, by the Leibniz rule and the previous inequality, while noting f(0) = 0, we have:
£(t) = /(:f’(s)ds < /OtCexp(—As)ds - —%(exp(—At) ~1).

Recall that exp(—At) is always positive, we can divide both sides by it:

— S (exp(—At) —1
wit) = expf((i)At) = A(exg((—A:)) ! - Z(exp(At) -1

Thus, we can extend the conclusion to v(t), in which:
o(t) < C+ Aw(t) = C+ C(exp(At) — 1) = Cexp(At),

which completes the proof. O
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Problem V.7. Let X(t) solve the Langevin equation:

dX(t) = —uX(t)dt + odB,

and suppose that X is a N (0, %) random variable. Show that:

g Hlt=s| t,s > 0.

E[X(5)X(0] = 3

Proof. Here, we first solve for the solution of Lagevin equation using the integrating factor:

F(t) = exp(ut), hence we have dF(t) = pexp(ut)dt.
Then, we have the product rule as:

d(F(t)X(t)) = F(t)dX(t) + X (t)dF(t) + dF(t)dX(t)

= exp(put)(— uX(t)dt + odBy) + pexp(ut) X (t)dt
= cexp(ut)dBy,

and so the solution to the Lagevin equation is:

t t
F(£)X(t) = F(0)X(0) + /0 o exp(ps)dBs = X(0) + o /0 exp (jus)dBs,

and hence we have: ,
X () = exp(—ut)X(0) + (7/0 exp (ju(s — 1)) dB.

Then, we think about the expectation as:

E[X(s)X

=E [(exp )-I—(T/Otexp (.“(“—t))dBu> (exp / (u=5) dBu)]

= exp (— u(t+5))E[X?(0)] + exp(—put)cE {X(O) /OS exp (p(u—s) }

+exp(—us)oE [X(O) /Ot exp (u(u— t))dBu} +?E [/(:
o? s

=exp(—pu(t+s))- g +exp(—ut)dE[X(0)]E [/0 exp (u(u— s))dBu}

exp (u(u —t))dBy /0 exp (p(u — S))dBu}

+ exp(—us)cE[X(0)]E [/Ot exp (u(u — t))dBu] + o?E {/Ot exp (p(u —t))dBy /Os exp (u(u — s))dBu]

2 . s
=exp (—pu(t+s))- (277[ +0’E [/Ot exp (u(u —t))dB, ./0 exp (p(u — s))dBu} .
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Now, the main goal is to evaluate the last integral. Without loss of generality, we assume that 0 <t <'s:
r ot

E / exp (p(u— t))dBu/
/0 0

[ pt ps
=E / / exp (u(u—t)) exp (u(v— s))dBvdBu]
_ / /0 . /[0 (u+70) — (t+5))dBy (w)dBy (w)dw

S

exp (u(u— s))dBu}

=E / exp (2uv — pu(t +s))dBy(w +/ dB,(w )}
=exp (—u(t+s)) /Ot exp(2uv)dv = 2111 exp (—u(t+s)) {exp(Zyv)}

— Zly exp (— u(t+s)) (exp(2ut) —1).

When plugged in together, we have:

2 o2

E[X(s)X(t)] = exp (— u(t +5)) - ‘277[ 2, P (—u(t+s))(exp(2ut) — 1)
2
(ZTy exp( (s—t)).

Note that since s > t is by our assumption, and it would otherwise be t — s, and we can conclude by |t —s|,

which result in: X

E[X(s)X()] = %exp (—plt—sl),

as desired. 0

Problem V.8. Prove thatif p > 2 and X € V([0, T]), then:

/Xsst ]g T2 F U |X5|pds}

for some constant C, > 0 depending only on p.

sup
te[0,T]

Proof. First of all, we have Itd isometry that:

ot 2 ot
‘/ XdBy| | = E [/ |Xs|2ds] .
0 0
Given the absolute value, we have non-negativity, and hence:
t 2 T
E | sup / XdBs| | <E [/ Xs|2ds} .
tefo,T) 1/0 0

This part is partially adapted from external source. Here, we consider the function ¢:

plx) = |7
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Here, we have:
¢'(x) = sgn(x)plxP~, and  ¢"(x) = p(p— 1)[xl"? aa.

Note that fot XsdBs =: M is a martingale, and we denote its supremum by M*, and by Martingale repre-

sentation theorem, it can be written as:
T -1 1 /T -2 2
MP = [ sgn(Ma)plMs[PtaMe+ 5 [ plp = 1)l (M)
In particular, the expectation is:
1 i
E(nr] < PO Vg2,

Then, to utilize the Holder inequality with g = ﬁ, we have:

p=2p
2

-2
E[|M*[P-2|MP] < E( M7 7 E[IMP)E T

Then, we have:
x r=2
E[|M*|P] < C,T 2 E[| Xs[F]. O
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VI Problem Set 6

Problem VI.1. Let us consider the one-dimensional SDE:
1
dX; = <\/1 + X2+ th> dt+,/1+X?dB;, Xo=x€R

(a) Does this equation admit strong solutions?

Solution. Here, this equation admits strong solution. First, we denote:

1
=V1+x2+ 5% and o(t,x) = V1+x2

We can verify this by showing that it satisfies the existence and uniqueness theorem for SDEs.

¢ Linear growth: We note that:

1
b(t, )] + ot x)| = ‘\/1+x2+x +W+xzy

1 5
<3 x|+2‘\/1+x2‘ S (L] +2(1+ [x]) = (14 |x]).

¢ Lipschitz condition: We note that the derivative of (¢, x) is

dj(t x)‘ _ |X| |x| —1.
dx ™’ VI+aZ Va2

Hence, o(t, x) must be Lipschitz, since if we assume that |o(t,x) — o(t,y)| > |x —y|, then by the
Cauchy’s mean value theorem, we have:

o (t,x) —o(t,y)|
lx —yl

> 1 which implies that there exists some ¢ € [x,y] such that (t é) >
which is a contradiction, so we have:
1 5
[6(t,x) = b(t,y)| +|o(t,x) —o(ty)] < 200t x) —o(ty)| + 5lx —y| < S lx —yl.

e Initial condition: Note that Xy = x € R is a constant, which is independent of the Brownian motion,
and E[|x|?] = x? < 0.

Therefore, the equation satisfies the existence and uniqueness theorem. Hence, the equation admits

strong solution. J

(b) Let Y; =log <\ /14 th + Xt). Find the SDE Y; satisfied.

Solution. Here, we want to use the Itd formula, here we consider the function:

g(x):log< 1+x2+x).
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Here, we take the partial derivatives with respect to x for g(x), where we note that:

X X
Jo Al Al Ve ox
VI+x2+x  V1i4+x24+x V14+x2—x

X+ V1+x2— "22

— 2
_ Vied Y 2 x _ 2y-1
ST irew VI 0

_%(1 +x2)7% S(2x) = —x(1— x2)7%.

g (x)

Then, we have:

g(Xt)dt+ 2 (XX, + (X0 (X2

1 Xt (dXt)z

m 21+ X2
1+ X2+ 1Xt) dt + 1+Xt2dBt}
ol /

dy; = 5

1+ X?
—1XtK\/l—l—Xz—l-1Xt>dt+\/1+X2dBt]2
2(1+x3)3 F2 t
P O PO W . (1+X2)dt

AT e
2,/1+ X2 Z(1+X7)2
1 X

a2 X gy gl dt = dt + dB,.
2. /14 x2

Xy
2 1+ x2
Hence, Y; satisfies that | dY; = dt + dB; |. 2

(c) Deduce an explicit solution for X;.

Solution. To find the solution, we have:
t t
Yt:Y0+/ ds+/ dB. = Yy +t+ By.
0 0

Also, we note that:

Yy = log(V'1+ x2+x),

so we have:

=log(V1+x2+x)+t+ B

Then, we can write Y; as function of X;:
log (,/1 + X? +Xt) =log(V1+x2+x) +t+ B

By taking the exponential on both sides, we have:

1+ X2+ X =eleP + (V1 + 22 +x),
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and by some arithmetic deductions, we get to that:

(eter + (V1 + 2+ X)>2 -1

Xy =
2 (eteBt +(V1+x2+ x))

Problem VI.2. Let us consider the one-dimensional SDE:
adX; = b(Xt)dt + (T(Xt)dBt, Xo=x€R.

Assume that b, o satisfies the Lipschitz condition and linear growth condition. Moreover, assume o is
continuous differentiable with |0’/ (x)| < C < coand o(x) > 6 > 0 for all x € R.

(a) Consider f(x) = fox ﬁdy and the process Y; = f(X¢). Find the SDE Y; satisfies.

Solution. Here, by the Leibniz rule, we have that:

A R S /C)
ox  o(x) o2 (U(x))z'
Then, we use It6 formula to derive that:
dY = %f(Xt)dt + %f(Xt)dXt + %aa:zf(xt)(dxt)2

_ 1 1) e

= Xy 2 (a(x))z(dXt)

_ U&t) [b(X0)dt + o(Xi)dB] — (Z(S;;Z b(X0)dt + 0(X0)dBi]

_ b(X4) 1 o'(Xy) 2, (b(X) 1,

= O_(Xtt)dt-f—dBt - ZW(U(Xt)) dt = (U(Xi) — EO’ (Xt)> dt + dBy.

Hence, the SDE that Y; satisfies is:

dYt = (b(Xt) — 10'/(Xt)) dt+dBt N
o 2

(b) Prove that, under the assumption in (a), the filtration H; = o({Xs}o<s<t) coincides with the natural
filtration F¢ = 0 ({Bs }o<s<t)-

Proof. Here, we want to show the two inclusions for the filtrations.
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* (H: C Fi:) Note that by definition:
dX; = b(Xt)dt + O'(Xt)dBt, Xo=x€R,

where b, o satisfies the Lipschitz condition and linear growth condition. Also we have Xy = x € R
independent of B; in which E[|x[?] = x? < co. Hence, the SDE satisfies the existence and uniqueness
theorem, and so X; is adapted to o ({Bs }o<s<¢), and hence H; C F;.

® (F: C Hy:) Here, recall from part (a), we have:

b(Xy) 1,
dB; = — =0 (Xy) | dt +dY;.
t ((7 X)) 57 (Xt) +aY;
Clearly, 1 satisfies the linear growth and Lipschitz condition, and we need to verify the first part, in
which we denote: b 1
) 1y
q)(x) - O'(X) 20 (X)

For the linear growth condition, we have that:

p(x)] < ||§((’;))|| 210 < BOHRD e o <§+§) (14 Jx]).

Note that we do not need Lipschitz condition, since we just need existence of a strong solution so
that F; is M; := o ({Ys }+<s)-adapted.

Also, note that f is monotonic, so it is injective, hence admitting a left-inverse f~!. Note that ¢ is
measurable, f is also measurable, so does the left-inverse f —1 Hence, M; = H;, and so F; C H;.

With both inclusions, we have H; = F;, as desired. O
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VII Problem Set 7

Problem VIL.1. (Exercise 7.1 on [Dksendal]). Find the generator of the following Itd diffusions:

(a) dXy = uXsdt + 0dB; (The Ornstein-Uhlenbeck process), where B; € R, and y, o are constants.

Solution. Here, let f € C3(R) be arbitrary, and we write the process as:

dXt = ,uXt dt-f— g dBt,
b(X:) o(Xt)

and we have the infinitesimal generator as:

2
Aflx) = ”x% * %‘72% = pxf'(x) + %sz”(x) .

(b) dX; = rXidt + aX;dB; (The geometric Brownian motion), where B; € R, and 7, « are constants.

Solution. Again, let f € C3(IR) be arbitrary, and we write the process as:

dXt = VXt dt+ DCXt dBt,
~—~— ~—
b(Xy) o(Xi)

and we have the infinitesimal generator as:

2
Af(x) = rx% + %(M)z% =|rxf(x) + %azxzf”(x) ‘

(c) dY; = rdt + aY;dB;, where B; € R, and 7, & are constants.

Solution. Once again, let f € C3(R) be arbitrary, and we write the process as:

dYt = r dt+ DCYt dBt,
~~ ~—
b(Y:) 00

and we have the infinitesimal generator as:

2
Af(x) :rg—i—i—%(ax)z% — rf’(x)+%a2x2f”(x) . ]}

t

dt
(d) dYy = (dX ), where X; is as in (a).
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Solution. While again, let f € C3(IR?) be arbitrary, and we write the process as:

qy, = at (" Vart () as,
‘Z/lXtdt + 0dB; ﬂXt g
—— o

b(Xt) a(Xe)

and we have the infinitesimal generator as:

d d 1 ,0?
Af(x1,x2) = % + llei + 5(72 axg .
4

dX 1 0
(e) (dX2> = <X2> dt + <€X1> dB;, where B; € R.

Solution. Even again, let f € C3(IR?) be arbitrary, and we write the process as:

X0 () e (0 .,

dX, X, eX1
N—— S——
b(X1,X2) 0(X1,X2)

and we have the infinitesimal generator as:

A = | —— _— — — = |
flx1,x2) oxy T X *3 0x3 |

Problem VIL.2.  (Exercise 7.2 on [DJksendal]). Find an Itd diffusion (i.e., write down the stochastic

differential equation for it) whose generator is the following:

(@) Af(x) = f'(x) + f"(x); f € C§(R).

Solution. Here, we reversely construct that:

dX; = dt + V/2dB; |
_l

_9f of

2
(b) Af(t,x) = 55 +cxzy + %azxzﬂ' f € C3(IR?), where c, a are constants.

ox2”’

Solution. Again, we reversely construct that:

1 0
dX; = dt + dBy |
' (cXt(z)> <ocXt(2)> i
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(©) Af(x1,%2) = 20235 +1og(1+ 23 + ) 3L + 11+ )2 >+ a1 SRR —f%‘ f e C(R2).

X

Solution. Once again, we reversely construct the coT matrix as:

ool — 1+x% X1 '
X1 1

Note that /14 x2 - /1 is not the same as the diagonals, so ¢ must be a 2-by-2 matrix.

Suppose 0 = (a ?) , then we have:
Y

ac+bd 2+d?,
1 X1
o =
2)
2X, 1 X
Xy = (1)2 (2)2 dt + dBy |
log {1+ X, +X; 0 1 .

a2+ b2 ac+bd
ool =

and we have a candidate of ¢ as:

Hence, we have:
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VIII Problem Set 8

Problem VIIL.1. (Exercise 7.7 on [Qksendal]). Let B; be Brownian motion on R” starting at x € R"” and
let D C IR" be an open ball centered at x.

(a) Prove that the harmonic measure uf, of B; is rotation invariant (about x) on the sphere dD. Conclude
that uf, coincides with normalized surface measure ¢ on dD.

Proof. Without loss of generality, we suppose x = 0, since the harmonic measure and Brownian motion is
translational invariant.

First, we want to show that the Brownian motion is invariant with rotations. Suppose U € R"*" such
that UUT = Id. Hence, we have detU = 1, and so when we have the change of variable p +— U - p, the
probability measure is the same, so the rotation of a Brownian motion is still a Brownian motion.

Now, as we consider the definition of the harmonic measure of some F € dD, we have that:

VOD(F) = QO[BTD € F|,
and consider a rotation centered at 0 as U, we then have:
Hp(U - F):= Q°[Br, € U-F] = Q°[U - By, € F] = Q°[By, € F] = uh(F),

as desired. Moreover, consider that the harmonic measure pf, of B; is rotational invariant about dD, for
any point d,d’ € 0D, we have that u},(d) = u},(d’) so the measure is uniformly distributed on the surface,
and pp(0D) = 1. Hence, it coincides with the normalized surface measure w on dD. O

(b) Let ¢ be a bounded measurable function on a bounded open set W C IR"” and define:
u(x) = E*[¢(Bqg,)] for x € W.

Prove that u satisfies the classical mean value property:

u(x) = [ u(yio(y) @)

for all balls D centered at x with D C W.

Proof. Here, we have ¢ € L'(W), so we have that:

u(e) = [ uapbv) = [ um)o(y),

since uf, coincides with normalized surface measure o. O
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(c) Let W be as in (b) and let w : W — R be harmonic in W, i.e.:
n 22
po=Y2%_0 inw.
i=1 9%
Prove that w satisfies the classical mean value property (7).
Proof. Here, recall Green’s formula for Harmonic PDE, we set the problem as:
Aw =0, in W,
w(x) =g(x), ondW,
where we assume that ¢(x) is bounded and measurable function on W.
Then, we have the model that IE[¢(By (w))] = u(x), and naturally by (b), we have:
w(x) = w(y)do(y).
() = | w(y)do() -

Problem VIIL.2. (Exercise 7.10 on [Dksendal]). Let X; be the geometric Brownian motion:
dXt = TXtdt + DCXtdBt.
Find E¥[X7 | F¢] for t < T by different approaches.

(a) Using the Markov property.

Solution. Here, we use the Markov property so that:

E¥[Xps (rp) | Fi] = EX[X7 ] = B[X;] - E [eXp <(r — D;) t+szt)]

= Xrexp (r(T—t)) = xexp(rt)exp (r(T —t)) =|xexp(rT) |

(b) Writing X; = xe" M;, where:

1
M; = exp (uth — 21)(21‘) is a martingale.

Solution. Here, we can write the expectation as:

E*[X7 | Fi] = E¥[xe'T M1 | Fi] = xe’TEX[M7 | Fi]

=xexp(rT) - My =exp (r(T —t))X¢ = .
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Stochastic Differential Equations

Problem VIIL.3. (Exercise 8.1 on [Dksendal]). Let A denote the Laplace operator on R".

(a) Write down, in terms of Brownian motion, a bounded solution g of the Cauchy problem:

%) Ly e(tx)=0, fort>0xeR",

a 2
8(0,x) = ¢(x),

where ¢ € C3 is given. (From general theory it is known that the solution is unique.)

Solution. Here, since ¢ € C(Z), we know that ¢ is lower-bounded. Then, we consider the It6 diffusion:

dX; = 0dt +1d dB; = dBy.

Then, we have the generator of the It6 diffusion as:

Af = % f% =Af  for f € CEHR").

i=1 i

Hence, we can use Feynman-Kac Formula that:

st%) = B exp = [ 0ds) p(x)| = [E¥loB1)] ]

(b) Let ¢ € Cp(R") and a > 0. Find a bounded solution u of the equation:

(w—éA)uztp in R".

Prove that the solution is unique.

Proof. Here, we note that we want to create the same It6 diffusion:

dX; = 0dt +1d dB; = dBy.

Then, we have the generator of the It6 diffusion as:

of _ Ayf  for f € C2(R").

1
Af ==
f 2 = ox?

n
i=1
Then, we can use Feynman-Kac Formula that:

u(t,x) =E* {exp <— /Otlp(XS)dsﬂ =E* [exp <—/Otl/J(Bt)ds>} ,

and the solution is unique for a given initial condition by Feynman-Kac.



Stochastic Differential Equations

Problem Set VIII Guo 43
Problem VIIL.4. (Exercise 8.7 on [Qksendal]). Let X; be a sum of It6 integrals of the form:
noot
Xp=)Y / vk (s, w)dBy(s),
k=170
where (By, - - -, By) is n-dimensional Brownian motion. Assume that:
tn
Bt = / ) 02 (s, w)ds — o0 ast — oo a.s.
0 k=1
Prove that:
. Xy
limsup —— = a.s.
t—oo \/2Ptloglog Bt
Hint: Use the law of iterated logarithm.
Proof. Here, we consider the differential form:
n
dXy =) v(s,w)dBy(t).
k=1
Then, we note that this is a 1-dimensional Brownian motion, and the time change is
tn
Bt = / Y v (s, w)ds.
0 k=1
With this time change, we can consider:
lim su # = limsu L =1
t—)oop /2B loglog B; t_)oop \/2tloglogt
almost surely by the law of iterated logarithm. O

Problem VIIL5. Find a solution to the following PDE:
(a) )
d ] - 0
ﬁu(t,x) + bxgu(t,x) + jﬁu(t,x) =0, xeR,te(0,T);
u(T,x) = x,

x € R.

Solution. Here, we need to think about the process for the SDE, as follows:

dXt = bXtdt + UdBt,

so we have the Itd generator as:

_ Of 1,9
Af = T
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However, note that x is not lower bounded, so we cannot use the Feynman-Kac backward equation,
directly, but we can think of a mollifier for € < 0 that:

2 32

- 0
il £ 9 (e — .
T 3 8x2u (t,x)=0, xeR,te(0,T);

u')(T,x) = max{e, x}, x e R.

d
(e) 4@
(t,x)+ bxaxu (t,x) +

Here, we consider the solution as:

E* [max {e, X7}] — ,

where X; is the solution to the OU process. J

(b) What if the boundary condition was replaced by u(T, x) = x2.

Solution. Then, we use the backward Feynman-Kac Formula, since x2 is bounded below, so that:

u(t,x) =|E* [Xﬂ

where X; is the solution to the OU process. J

Problem VIIL6. (Exercise 8.11 on [Dksendal]).

(a) LetY(t) =t+ B(t) for t > 0. For each T > 0, find a probability measure Q7 on Fr such that Qr ~ P
and {Y () };<r is Brownian motion with respect to Qr. Use:

MrdP = M;dIP on ]:t(n);t < T when M is a martingale
to prove that there exists a probability measure Q on F« such that:

Q|r=0r forall T > 0.
Solution. Here, we write the expression as:
dy(t) = 1 dt+dB(t),

and hence we have the martingale:

t 1 t 1
M; = exp _/OdBS_E/(JdS = exp _B(t)_it ,
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and hence by Girsanov theorem I, we have:

dQ(w) = exp (—B(T) - ;T) dP(w),

while Y (#) is a Brownian motion with respect to Qr for 0 <t < T.
Note that M; is martingale, hence we can consider:

Qt |r,=Qsfort>s.

Hence, we can construct the measure from Q; for a t > 0 in to Q, as desired.

(b) Show that:

P (lim Y(t) = oo> =1,
t—o0
while:
Q <lim Y(t) = oo) =0.
t—oc0

Why does not this contradict the Girsanov theorem?

Solution. Recall the Law of Iterated Log, we have:

. By

Iimsup ———— =1,
t~>oop \/2tloglogt
. B;

liminf

S S——
t=oo | /2tloglogt
Now, consider the probability measure of IP, we have:

. By +1t . t
lim ———— < lim —(———— —
t—oo \/2tloglogt ~ t—oo \/2tloglogt
However, for the probability measure Q, we have that:

B;

lim ———
t—oo /2tloglogt

not to oo a.s.

Hence, we note that I’ and Q does not correspond, this is because Q is constructed from T — oo, but is

does not align to the case for concrete T values.

Problem VIIL.7. (Exercise 8.12 on [Jksendal]). Let:

{0 1 3 (dBy(t)
o= (Y are (1 2) (00, s

Find a probability measure

|
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Q on ]:;2) such that Q ~ IP and such that:

Solution. Here, we think about:

so that we have:
1 3 a(t)y (0
-1 =2/ \ey) \1)’

Then, we will think about Girsanov theorem I, so we have:

M = exp <— /Ot (‘f) (4B1(5) aBa(t)) —% Ot (‘f) (-3 1) ds> — exp (3B (t) — By(t) — 5t),

which leads to the change in probability measure as:

and hence b =1 and a = —3.

dQ(w) =| exp (3B1(T)(w) — By(T)(w) — 5T)dP(w) |

Problem VIIL8. Let (Q), F,IP) be a complete probability space and B = {B;};>o be a Brownian motion
with respect to filtration {F; }¢>o.

(@) Let b : R — IR be a bounded continuously differentiable function and x a fixed real number. De-
termine a new probability Q in (Q, F), the process W; = B; — fg b(Bs + x)ds is a Brownian motion
when 0 <t < T. Find the SDE Y; = x + B; satisfied with respect to Q, i.e., with respect to W;.

Solution. Here, we write the expression in terms of differential form:
th = dBt — b(Bt + X)dt.

Then, we use the Girsanov theorem I to obtain that:

ot t
M; = exp (/O ~b(B+ x)dB; — 1 0 b2(Bs+x)ds).
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Hence, with the change in measure, we have:

dQ(w) = exp (/(;Tb(BS + x)dBs — % ./(;T b2 (B + x)ds) AP (w).

Then, for Y; = x + B;, we have:

dY; = dB; = dW; + b(B; + x)dt = | b(Ys)dt + dW |
_

(b) Let F be an antiderivative of b. Prove that dQ = Z1dIP with:

1 t

Zy = exp (F(Bt—i—x)—l:(x)—z 0[

b’ (Bs + x) + b*(Bs + x)}ds) .

Proof. Note that from (a), we have:
T 1 /T
Zr = exp (/ b(B. +x)dB, — 5 [ P(Bs+ x)ds)
0 0

=exp (F(BT +x)—F(x) — /OT %b’(Bs + x)ds — %/OT b*(Bs + x)ds)

1 t

= exp (F(Bt +x)—F(x) — 2 ), [b(Bs 4 x) + b*(Bs + x)]ds) ,

as desired. O

(c) Let Y be the solution of:
{dYt = tanh(Yt)dt + th,

Y():x.

Find E[¢?"!] the Laplace transform of Y; with respect to .

Solution. Here, we immediately notice that this is a great model to define another Brownian motion,

namely:

i T 1T,
M = exp (/O tanh (Ys)dWs — E/o tanh (Ys)ds) .

Hence, we have Y; as a Brownian motion with measure:

T T
dT = exp <—/ tanh(Y;)dW; — %/ tanhz(Ys)ds> aQ
0 0
T 1 rT 5 T 1 T
— exp ( /0 tanh(Y,)dW, — 5 /O tanh? (Y, )ds + /0 b(Bq + x)dB, — /O bz(BS+x)ds> dp.

Then, we have the Laplace transformation as:

Er[exp(0Y:)] = exp <;02t> ,
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and hence, by the change of variable, we have:
Ep[exp(60Y:)]

1 5 T 1 T 2 T 1 T
— exp (29 t—/o tanh(Ys)dWs—E/O tanh (Ys)ds—i—/o b(Bs—i—x)st—E/O b2(Bs+x)ds>

exp (%Gzt — fOT tanh(Ys)dBs — 36t — fOT tanh(Y;)b(B; + x)dt
. OT tanh? (Ys)ds + foT b(Bs + x)dBs — 3 OT b?(Bs + x)ds)
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