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I Problem Set 1

Problem I.1. (Exercise 2.1 on [Øksendal]). Suppose that X : Ω → R is a function which assumes only
countably many values a1, a2, · · · ∈ R.

(a) Show that X is a random variable if and only if:

X−1(ak) ∈ F for all k = 1, 2, · · · . (1)

Proof. Here, note that X assumes only countably many values a1, a2, · · · ∈ R, and denote the set of these
points as X(Ω), for any open set U ⊂ R, its preimage X−1(U) must be a subset of X(Ω), i.e., X−1(U) ⊂
X−1(X(Ω)

)
. Now, let I ⊂ N+ be a indexed set in which ai ∈ U, then the preimage of U is simply the

countable union X−1(U) =
⋃

i∈I X−1(ai).
Recall that for a σ-algebra, if a sequence of set is in it, its countable union must be still in it. Note that X(Ω)

is countable, it is discrete (or not containing an interval in R, which making it uncountable), so for any aj

where j ∈ N+, there exists some ϵ > 0 such that ak /∈ Nϵ(aj) for all k 6= j. By such, we know that X being
a random variable is equivalent to saying that X−1(U) ∈ F for all open set U ⊂ R, which is equivalent
to saying that X−1(

⋃
i∈I)ai ∈ F for all possible I ∈ P(N+), which is equivalently to X−1(ak) ∈ F for all

k ∈ Z+, as desired.

(b) Suppose (1) holds, show that:

E[|X|] =
∞

∑
k=1

|ak|P[X = ak]

Proof. Now, as we shall evaluate the expectation, while X(Ω) is countable, we have:

E[|X|] =
∫

Ω
|X(ω)| dP(ω) =

∫
X(Ω)

|a| dP
(
X−1(a)

)
= ∑

a∈X(Ω)

|a|P
(
X−1(a)

)
=

∞

∑
k=1

|ak|P[X = ak],

as desired.

(c) If (1) holds and E[|X|] < ∞, show that:

E[X] =
∞

∑
k=1

akP[X = ak].

Proof. By (1) and E[|X|] < ∞, we know that |X(ω)| is integrable, then, we may evaluate the integral
without the absolute value sign (which is not necessarily positive):

E[X] =
∫

Ω
X(ω) dP(ω) =

∫
X(Ω)

a dP
(
X−1(a)

)
= ∑

a∈X(Ω)

aP
(
X−1(a)

)
=

∞

∑
k=1

akP[X = ak].
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Note that based on the definition of Lebesgue integration, a function is integrated on the positive and
negative parts, respectively, so we must enforce convergence in absolute value (absolute convergence) for
the integral to be well defined.

(d) If (1) holds and f : R → R is measurable and bounded, show that:

E[ f (X)] =
∞

∑
k=1

f (ak)P[X = ak].

Proof. First, we need to show that E[| f (X)|] is finite. Since f is bounded, there exists some C ∈ R+ such
that | f (x)| < C for all x ∈ R. Moreover, since f is measurable, and X(Ω) is discrete, then f

(
X(Ω)

)
is

discrete (thus measurable) and for any x ∈ f
(
X(Ω)

)
, f−1(x) is measurable, hence, we have the expectation

as:

E[| f (X)|] =
∫

Ω
| f
(
X(ω)

)
| dP(ω) =

∫
X(Ω)

| f (a)| dP
(
X−1(a)

)
= ∑

a∈X(Ω)

| f (a)|P
(
X−1(a)

)
=

∞

∑
k=1

|ak|P[X = ak]

< C
∞

∑
k=1

P[X = ak] = C < ∞.

Hence, it is integrable, so we may find the expectation without absolute value sign, that is:

E[ f (X)] =
∫

Ω
f
(
X(ω)

)
dP(ω) =

∫
X(Ω)

f (a) dP
(
X−1(a)

)
= ∑

a∈X(Ω)

f (a)P
(
X−1(a)

)
=

∞

∑
k=1

f (ak)P[X = ak],

which finishes the proof.

Problem I.2. (Exercise 2.3 on [Øksendal]). Let {Hi}i∈I be a family of σ-algebras on Ω. Prove that:

H =
⋂
{Hi : i ∈ I}

is again a σ-algebra.

Proof. First, we note that each σ-algebra contains ∅, hence their intersection shall still contain ∅.
Now, for any F ∈ H, we know that F ∈ Hi for all i ∈ I, then Fc ∈ Hi for all i ∈ I, thus Fc ∈ H.
Eventually, let {Fa}a∈N+ ⊂ H be an arbitrary sequence, then {Fa}a∈N+ ⊂ Hi for all i ∈ I, then

⋃
a∈N+ Fa ∈

Hi for all i ∈ I, hence the countable union is in H.
Thus, H is a σ-algebra.
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Problem I.3. (Exercise 2.4 in [Øksendal]).

(a) Let X : Ω → Rn be a random variable such that:

E[|X|p] < ∞ for some p, 0 < p < ∞.

Prove Chebychev’s inequality:

P[|X| ≥ λ] ≤ 1
λp E[|X|p] for all λ > 0.

Hint:
∫

Ω |X|p dP ≥
∫

A |X|p dP, where A = {ω : |X| ≥ λ}.

Proof. Here, we first note that A ⊂ Ω, so we trivially have:∫
Ω
|X|pdP ≥

∫
A
|X|p dP,

by the monotonicity measure of subsets.
Then, we may build an inequality as:∫

Ω
|X|p dP ≥

∫
A
|X|p dP =

∫
A
|X(ω)|p dP(ω)

≥
∫

A
λp dP(ω) = λp

∫
A

dP(ω) = λpP(A) = λpP[|X| ≥ λ].

Then, by dividing both sides with λp, we now have:

P[|X| ≥ λ] ≤ 1
λp

∫
Ω
|X|p dP =

1
λp E[|X|p],

which completes the proof.

(b) Suppose there exists k > 0 such that:

M = E[exp(k|X|)] < ∞.

Prove that P[|X| ≥ λ] ≤ Me−kλ for all λ ≥ 0.

Proof. Here, can first note that since exp(−) is monotonic, so:

P[|X| ≥ λ] = P[| exp(k|X|)| ≥ ekλ].

Since we assume that M = E[exp(k|X|)] < ∞, we can apply part (a) with p = 1 as:

P[| exp(k|X|)| ≥ ekλ] ≤ 1
ekλ

E[| exp(k|X|)|] = 1
ekλ

E[exp(k|X|)] = Me−kλ,

and it combines with the previous equality as:

P[|X| ≥ λ] ≤ Me−kλ,

as desired.
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Problem I.4. (Exercise 2.6 in [Øksendal]). Let (Ω,F , P) be a probability space and let A1, A2, · · · be sets
in F such that:

∞

∑
k=1

P(Ak) < ∞.

Prove the Borel-Cantelli lemma:

P

(
∞⋂

m=1

∞⋃
k=m

Ak

)
= 0,

i.e., the probability that ω belongs to infinitely many Ak’s is zero.

Proof. First, we note that
⋂∞

m=1
⋃∞

k=m Ak is a countable intersection of countable union of measurable set,
hence

⋂∞
m=1

⋃∞
k=m Ak ∈ F , i.e.it is measurable.

Then, note that the infinite sum ∑∞
k=1 P(Ak) < ∞, then for any ϵ > 0, there exists some m > 0 such that:

∞

∑
k=m

P(Ak) < ϵ.

Thus, we can note that by the fact that an intersection is a subset and by the countable additivity of
measure, we have:

P

(
∞⋂

m=1

∞⋃
k=m

Ak

)
≤ P

(
∞⋃

k=m

Ak

)
< ϵ.

Now, since P (
⋂∞

m=1
⋃∞

k=m Ak) < ϵ for all ϵ > 0, we have:

P

(
∞⋂

m=1

∞⋃
k=m

Ak

)
= 0,

which completes the proof of the Borel-Cantelli lemma.

Problem I.5. Prove Lebesgue’s dominance convergence theorem under assumption “convergence in
probability.” You can apply the version under assumption “convergence almost surely.”

Here, we first recall Lebesgue’s dominance convergence theorem:

Theorem. Suppose { fn}∞
n=1 is a sequence of measurable functions such that fn(x) → f (x) for a.e. x,

as n → ∞. If | fn(x)| ≤ g(x), where g is integrable, then:∫
| fn − f | → 0 as n → ∞,

and consequently: ∫
fn →

∫
f as n → ∞.

To consider this under the “convergence in probability,” the theorem becomes:
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Theorem. Suppose {Xn}∞
n=1 is a sequence of random variables Xi : Ω → R such that Xn

P−−→ X,
where X : Ω → R is a random variable, as n → ∞. If |Xn| ≤ Y, for random variable Y : Ω → R,
where E[|Y|] < ∞, then:

E[|Xn − X|] → 0 as n → ∞,

and consequently:
E[Xn] → E[X] as n → ∞.

Proof. Let ϵ > 0 be arbitrary, we define:

Ωϵ := {ω ∈ Ω : |Xn(ω)− X(ω)| ≤ ϵ},

and correspondingly:
Ωc

ϵ := {ω ∈ Ω : |Xn(ω)− X(ω)| > ϵ}.

By the definition of convergence in probability, there exists some n ∈ N+ such that P[|Xn − X| > ϵ] < ϵ,
so we have P(Ωc

ϵ) < ϵ with arbitrarily large n.
Also, since E[|Y|] < ∞, we note that |Y| must be bounded a.e., that is |Y| < k for some k ∈ R+ a.e.
Then, we want to decompose our expectation as:

E[|Xn − X|] =
∫

Ω
|Xn(ω)− X(ω)| dP(ω)

=
∫

Ωϵ

|Xn(ω)− X(ω)| dP(ω) +
∫

Ωc
ϵ

|Xn(ω)− X(ω)| dP(ω)

≤ P(Ωϵ)ϵ +
∫

Ωc
ϵ

2|Y(ω)| dP(ω)

≤ 1 · ϵ + 2kϵ ≤ (2k + 1)ϵ.

Thus, as n → ∞, E[|Xn − X|] < (2k + 1)ϵ for all ϵ > 0, so E[|Xn − X|] → 0.
Afterwards, we shall note that:

|E[Xn]− E[X]| = |E[Xn − X]| ≤ E[|Xn − X|] → 0 as n → ∞,

so we have E[Xn] → E[X] as n → ∞.
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II Problem Set 2

Problem II.1. (Exercise 2.17 on [Øksendal]). If Xt(·) : Ω → R is a continuous stochastic process, then for
p > 0 the p-th variation process of Xt, 〈X, X〉(p)

t is defined by:

〈X, X〉(p)
t (ω) = lim

∆tk→0
∑

tk≤t

∣∣Xtk+1(ω)− Xtk (ω)
∣∣p

as the limit in probability where 0 = t1 < t2 < · · · < tn = n and ∆tk = tk+1 − tk. In particular, if p = 1,
this process is called the total variation process and if p = 2, it is called the quadratic variation process. For
Brownian motion Bt ∈ R, we now show that the quadratic variation process is simply:

〈B, B〉t(ω) = 〈B, B〉(2)t (ω) = t a.s.

(a) Define:
∆Bk = Btk+1 − Btk ,

and put:
Y(t, ω) = ∑

tk≤t

(
∆Bk(ω)

)2.

Show that:

E

[(
∑

tk≤t
(∆Bk)

2 − t
)2]

= 2 ∑
tk≤t

(∆tk)
2,

and deduce that Y(t, ·) → t in L2(P) as ∆tk → 0.

Proof. Here, we first recall the property of Brownian motion so that:

∆Bk ∼ N (0, tk+1 − tk) = N (0, ∆tk).

Here, we note that the Brownian motions are independent, so we have:

E

[(
∑

tk≤t
(∆Bk)

2 − t
)2]

= E

[
∑

tk≤t

(
(∆Bk)

2 − t
)2
]
= ∑

tk≤t
E
[(
(∆Bk)

2 − t
)2]

= ∑
tk≤t

E
[
(∆Bk)

4 − 2t(∆Bk)
2 + t2].

Recall the fourth moment being 3σ4 = 3(∆tk)
2, the second moment as σ2 = ∆tk, so we have the expectation

as:

E

[(
∑

tk≤t
(∆Bk)

2 − t
)2]

= 3(∆tk)
2 − 2(∆tk)

2 + (∆tk)
2 = 2(∆tk)

2.

Hence, as we consider the expectation as integral, we have:

∫
Ω

(
∑

tk≤t
(∆Bk(ω))2 − t

)2

dP(ω) → 0 as ∆tk → 0,

so we have L2 convergence that Y(t, ·) := ∑tk≤t(∆Bk(ω))2 → t, as required.
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(b) Use (a) to prove that a.a. paths of Brownian motion do not have a bounded variation on [0, t], i.e.
the total variation of Brownian motion is infinite, a.s.

Proof. First, we may obtain the inequality that:

∑
tk≤t

|∆Bk(ω)| = ∑
tk≤t

|∆Bk(ω)|2
|∆Bk(ω)| ≥ 1

suptk≤t |∆Bk(ω)| ∑
tk≤t

|∆Bk(ω)|2.

Again, note that we want ∆tk → 0, then we have |∆Bk(ω)| → 0 for all tk ≤ t, thus:

〈B, B〉(1)t (ω) = lim
∆tk→0

∑
tk≤t

|∆Bk(ω)| ≥ lim
∆tk→0

1
suptk≤t |∆Bk(ω)| ∑

tk≤t
|∆Bk(ω)|2

= 〈B, B〉(2)t (ω) lim
∆tk→0

1
suptk≤t |∆Bk(ω)| = t lim

∆tk→0

1
suptk≤t |∆Bk(ω)| = +∞.

Hence, we have the total variation of the Brownian motion being infinite almost surely.

Problem II.2. (Exercise 2.18 on [Øksendal]).

(a) Let Ω = {1, 2, 3, 4, 5} and let U be the collection:

U =
{
{1, 2, 3}, {3, 4, 5}

}
of subsets of Ω. Find the smallest σ-algebra containing U , i.e., the σ-algebra HU generated by U .

Solution. From the beginning, the σ-algebra must contain the empty set and its compliment, {∅, Ω}.
Then, consider the sets in the collection and their (countable union), we have:{

∅, {1, 2, 3}, {3, 4, 5}, {1, 2, 3, 4, 5} = Ω
}

.

Then, consider the complimentary sets, we must have:{
∅, {1, 2, 3}, {3, 4, 5}, Ω, {4, 5}, {1, 2}

}
,

while this would have created another union and a compliment, so we have:{
∅, {3}, {1, 2}, {4, 5}, {1, 2, 3}, {3, 4, 5}, {1, 2, 4, 5}, Ω

}
.

Now, one can verify that the above collection contains U , has the empty set, compliments, and countable
unions, so the σ-algebra is:

HU =
{

∅, {3}, {1, 2}, {4, 5}, {1, 2, 3}, {3, 4, 5}, {1, 2, 4, 5}, Ω
}

. ⌟
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(b) Define X : Ω → R by:

X(1) = X(2) = 0, X(3) = 10, X(4) = X(5) = 1.

Is X measurable with respect HU ?

Solution. Yes . By Problem I.1(a), since we have a (at most) countable image, we can check the preimage
of each single value of output. Note that:

X−1(0) = {1, 2} ∈ HU , X−1(10) = {3} ∈ HU , and X−1(1) = {4, 5} ∈ HU ,

so X is HU -measurable. ⌟

(c) Define Y : Ω → R by:
Y(1) = 0, Y(2) = Y(3) = Y(4) = Y(5) = 1.

Find the σ-algebra HY generated by Y.

Solution. Here, we may note that the preimage is discrete, so we consider the collection:

Y =
{
{1}, {2, 3, 4, 5}

}
,

and our solution is the σ-algebra generated by Y , namely:

HY =
{

∅, {1}, {2, 3, 4, 5}, Ω
}

. ⌟

Problem II.3. Suppose {Zk}∞
k=1 are independent N (0, 1) random variables. Show that |Zn(ω)| =

O(
√

log(n)) as n → ∞ almost surely.
Hint: You may need Borel-Cantelli lemma.

Proof. Here, we construct our set of events {Ak}∞
k=1. We let:

Ak := {ω ∈ Ω : |Zk| > 2
√

log k}.

Then, we note that:
P(Ak) = 2P(Zk > 2

√
log k) = 1 − erf(

√
2 log k),

and we want to show that ∑∞
k=1 P(Ak) < +∞.

Here, we first notice that P(A2) ⪅ 0.095891 � 0.25 = 1/22, and we take their derivatives as:

d
dk
[
1 − erf(

√
2 log k)

]
= − 2√

π

d
dk

∫ √
2 log k

0
e−t2

dt

= − 2√
π

exp(−2 log k) · 1
k
√

2 log k
= − 2/

√
π

k3
√

log k
.
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Note that when we take the derivative of 1/k2 with respect to k, we obtain −2/k3, in which we have:

d
dk

[
1
k2

]
= − 2

k3 > − 2/
√

π

k3
√

log k
=

d
dk
[
1 − erf(

√
2 log k)

]
for k > 0.

Hence, we may conclude that:

P(Ak) <
1
k2 for all k ≥ 2.

Hence, we have:
∞

∑
k=1

P(Ak) ≤ 1 +
∞

∑
k=2

P(Ak) ≤ 1 +
∞

∑
k=1

1
k2 < +∞,

by the convergence of harmonic series, so our sets Ak satisfies the condition Borel-Cantelli lemma.
Now, since {Zk}∞

k=1 is independent, we have:

P

(
lim sup

k→∞
(Ak)

)
= P

(
∞⋂

m=1

∞⋃
k=m

Ak

)
= 0,

which means that:
P({ω ∈ Ω : |Zk(ω)| > 2

√
log k}) → 0 as k → ∞,

which implies that |Zk(ω)| ≤ 2
√

log k for all ω ∈ Ω \ N where N is a null set, and hence:

|Zn(ω)| ≤ 2
√

log n as n → ∞ a.s.,

which completes the proof.

Problem II.4. Let {Bt}t≥0 be one-dimensional Brownian motion.

(a) Find the density of the random vector (Bs, Bt) where 0 < s < t < ∞.

Solution. Here, for the density function, we are able to express the probability as:

P(Bs ∈ F1, Bt ∈ F2) =
∫

F1×F2

ρ(s, x)ρ(t − s, y − x)dxdy

=
∫

F1×F2

1√
2πs

exp
(
−|x|2

2s

)
· 1√

2π(t − s)
exp

(
−|y − x|2

2(t − s)

)
dxdy

=
∫

F1×F2

1
2π
√

s(t − s)
exp

(
−|x|2

2s
− |y − x|2

2(t − s)

)
dxdy.

Hence, the density function is:

ρ(s, t, x, y) =
1

2π
√

s(t − s)
exp

(
−|x|2

2s
− |y − x|2

2(t − s)

)
.

⌟
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(b) Find the conditional density of the vector (Bs, Bt) where 0 < s < t < 1 under the condition B1 = 0.

Solution. Here, we consider the conditional probability as:

P(Bs ∈ F1, Bt ∈ F2 | B1 = 0) =
P(Bs ∈ F1, Bt ∈ F2, B1 = 0)

P(B1 = 0)
.

Hence, the density function will be given as:

ρ(s, t, x, y) =
ρ(s, x)ρ(t − s, y − x)ρ(1 − t, 0 − y)

ρ(1, 0)

=

1√
2πs

exp
(
− |x|2

2s

)
· 1√

2π(t−s)
exp

(
− |y−s|2

2(t−s)

)
· 1√

2π(1−t)
exp

(
− |y|2

2(1−t)

)
1√
2π

exp
(
− |0|2

2

)
=

1
2π
√

s(t − s)(1 − t)
exp

(
−|x|2

2s
− |y − s|2

2(t − s)
− |y|2

2(1 − t)

)
.

⌟

(c) Consider the process Xt = e−αt/2Beαt . Find the probability density of (Xt1 , · · · , Xtn).

Solution. Again, the vector of the Brownian motion is the random vector of a multi-normal distribution,
that is:

(Beαt1 , Beαt2 , · · · , Beαtn ) ∼ N
(
(0, 0, · · · , 0), Σ

)
,

where Σ ∈ Rn×n is a positive definite variance matrix, now we consider the exponentials, so the distribu-
tion would be:

(Xt1 , · · · , Xtn) ∼ N
(
(0, 0, · · · , 0), Σ

)
,

hence, so the density function is:

ρ
(Xt1 ,··· ,Xtn )∼N

(
(0,0,··· ,0)

(x1, x2, · · · , xn) = 2π|Σ|−1/2 exp
(
−1

2
(x1, · · · , xn)

⊺Σ(x1, · · · , xn)

)
.

⌟

Problem II.5. Let {Xn}n≥1 be a sequence of independent random variables on the probability space
(Ω,F , P) with mean 0 and variance σ2. Denote Fn = σ{Xk, 1 ≤ k ≤ n}. Let {Zn}n≥1 be a square-
integrable process predictable with respect to Fn (i.e., Zn+1 is Fn-measurable).

(a) Show that Yn = ∑n
k=1 ZkXk is a square integrable martingale.

Proof. First, we want to show that Yn is square integrable, for each finite n, it is a finite sum of random
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variables, so we can reduce to the case of showing that ZkXk is square integrable. Consider that:∫
Ω
|Zk(ω)Xk(ω)|2dω =

∫
{ω∈Ω:|ω|≤δ}

|Zk(ω)Xk(ω)|2dω +
∫
{ω∈Ω:|ω|>δ}

|Zk(ω)Xk(ω)|2dω

≤ C1

∫
{ω∈Ω:|ω|≤δ}

|Zk(ω)|2dω + C2

∫
{ω∈Ω:|ω|>δ}

|Xk(ω)|2dω.

Note that with choice of δ, Zk will become bounded for larger then δ as it is square integrable, and Xk will
be bounded for smaller than δ as it has mean of 0, hence the function is still square integrable.
For the martingale part, fir any n ≥ 1 and j > n, we have the conditional expectation as:

E[Yj | Y1, · · · , Yk] =
j

∑
i=1

E[ZiXi | Y1, · · · , Yk] =
k

∑
i=1

ZiXi +
j

∑
i=k+1

ZiE[Xi]︸ ︷︷ ︸
=0

= Yk,

hence we have shown that Yn is martingale.
Therefore, {Yn} is a sequence of square integrable martingale.

(b) Show that E[Yn] = 0 and that E[Y2
n ] = σ2 ∑n

k=1 E[Z2
n].

Proof. Here, we may consider the expectation based on the different measure of X:

E[Yn] =
n

∑
k=1

E[ZkXk] =
n

∑
k=1

∫
Fn

ZkXk dP =
n

∑
k=1

(∫
Fn

Zk dP ·
∫
Fn

ZkXk dP

)
= 0.

Then, we consider the second moment as (by independence):

E[Y2
n ] = Var[Yn] =

n

∑
k=1

Var[Zk]Var[Xk] =
n

∑
k=1

σ2E[Z2
k ] = σ2

n

∑
k=1

E[Z2
k ],

which finishes the proof.

(c) Let us assume Zk =
1
k . Is the martingale {Yn}n≥1 uniformly integrable?

Solution. Here, we may observe from (b) that we would have Yn having expectation and variance as:

E[Yn] = 0 and E[Y2
n ] = σ2

n

∑
k=1

E[Z2
n].

Hence, as n → ∞, we have E[Y2
n ] < +∞ converging. Therefore, when we consider:

lim
m→∞

sup
i≥1

[∫
|Yi |≥m

|Yi|dP

]
,

where we have P(|Yi| ≥ m) → 0 as m → ∞, and so the limit is zero and the martingale is uniformly
integrable. ⌟
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III Problem Set 3

Problem III.1. (Exercise 3.1 on [Øksendal]). Prove directly from the definition of Itô integrals that:∫ t

0
sdBs = tBt −

∫ t

0
Bsds.

Hint: Note that:

∑
j

∆(sjBj) = ∑
j

sj∆Bj + ∑
j

Bj+1∆sj.

Proof. Here, from the definition, we note that s is already an elementary function, so we may consider the
partition such that ∆t → 0:∫ t

0
sdBs = ∑

j
sj∆Bj = ∑

j
∆(sjBj)− ∑

j
Bj+1∆sj = tBt −

∫ t

0
Bsds,

as desired.

Problem III.2. (Exercise 3.5 on [Øksendal]). Prove directly that:

Mt = B2
t − t

is an Ft-martingale.

Proof. First, we want to show that the process is integrable, i.e., for any fixed t > 0:

E[|Mt|] = E[|B2
t − t|] = E[|χ2(t)− t|] < +∞.

Then, we suppose any s ≤ t fixed, and recall that Brownian motions are martingale, let:

E[Mt | Fs] = E[B2
t − t | Fs] = E[B2

t | Fs]− t

= E[(Bt − Bs)
2 + 2BtBs − B2

s | Fs]− t

= E[(Bt − Bs)
2 | Fs] + E[2BtBs | Fs]− E[B2

s | Fs]− t

= (t − s) + 2BsE[Bt | Fs]− B2
s − t = B2

s − s = Ms,

so Mt is an Ft-martingale.

Problem III.3. (Exercise 3.7 on [Øksendal]). A famous result of Itô (1951) gives the following formula for
n times iterated Itô integrals:

n!
∫

· · ·
( ∫ ( ∫

0≤u1≤···≤un≤t

dBu1

)
dBu2

)
· · · dBun = t

n
2 hn

(
Bt√

t

)
, (2)



Stochastic Differential Equations Problem Set III Guo 13

where hn is the Hermite polynomial of degree n, defined by:

hn(x) = (−1)ne
x2
2

dn

dxn

(
e−

x2
2

)
; n = 0, 1, 2, · · · .

Thus h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x.

(a) Verify that in each of these n Itô integrals, the integrand satisfies the requirements for V .

Proof. Here, we note that hn(x) is integrable, and we have:

fn(t, ω) =
1

(n − 1)!
t

n−1
2 hn−1

(
Bt√

t

)
,

we want to show:

• (t, ω) 7→ f (t, ω) is B ×F measurable.
Note that for hn is measurable over B ×F , so it is good.

• f (t, ω) is Ft-adapted, i.e., ω 7→ f (t, ω) is Ft-measurable.
Again, hn is measurable of F with fixed ω, so it is good.

• E
[∫ T

0 f (t, ω)2dt
]
< +∞.

We have:

E

[∫ T

0
f (t, ω)2dt

]
≤ nT2 < +∞.

Hence, the integrands satisfies the requirements of being V .

(b) Verify formula (2) for n = 1, 2, 3.

Proof. • (n = 1:) We have:

1!
∫ t

0
dBu1 = Bt =

√
t · Bt√

t
.

• (n = 2:) We have:

2!
∫ t

0
Bu2 dBu2 = B2

t − t = t
(

B2
t

t
− 1
)

• (n = 3:) We have:

3!
∫ t

0

(
1
2

B2
u3
− 1

2
u3

)
dBu3 = 3

∫ t

0
B2

u3
dBu3 − 3

∫ t

0
u3dBu3 = B3

t − 3
∫ t

0
Bu3 du3 + 3tBt − 3

∫ t

0
Bu3 du3

= B3
t − 3tBt = t

3
2

(
B3

t

t
3
2
− 3

Bt√
t

)
.
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(c) Use (b) to prove that Nt = B3
t − 3tBt is a martingale.

Proof. Note that Itô integrals are martingale, and since B3
t − 3tBt is an Itô integral, it is martingale.

Problem III.4. Compute:

(a)

E

[
Bs

∫ t

0
BrdBr

]
.

Solution. Here, we have:

E

[
Bs

∫ t

0
BrdBr

]
= E

[
Bs ·

1
2
(B2

t − t)
]
=

1
2

E[BsB2
t − tBs] =

1
2

E[BsB2
t ]−

1
2

tE[Bs] =
1
2

E[BsB2
t ].

Now, we consider two distinctive cases for E[BsB2
t ]:

• (s ≤ t:) We have:

E[BsB2
t ] = E[Bs(Bt − Bs)

2 − B3
s + 2B2

s Bt] = E[Bs]E[(Bt − Bs)
2]− E[B3

s ] + 2E[B2
s Bt]

= 0 · (t − s)− 0 + 2E[B2
s Bt] = 2E[B2

s Bt]

= 2E[B2
s (Bt − Bs) + B3

s ] = 2E[B2
s ]E[Bt − Bs] + 2E[B3

s ] = 2 · s · 0 + 0 = 0.

• (s > t:) Otherwise, we have:

E[BsB2
t ] = E[B2

t (Bs − Bt) + B3
t ] = E[B2

t ]E[Bs − Bt] + E[B3
t ] = t · 0 + 0 = 0.

Hence, we have the expectation evaluated as 0 . ⌟

(b)

E

[(
Bs

∫ t

0
BrdBr

)2
]

where s ≤ t.

Solution. Here, we have:

E

[(
Bs

∫ t

0
BrdBr

)2
]
= E

[(
Bs ·

1
2
(B2

t − t)
)2
]
=

1
4

E[B2
s (B4

t − 2t2B2
t + t2)]

=
1
4

E[B2
s B4

t − 2t2B2
s B2

t + t2B2
s ] =

1
4

E[B2
s B4

t ]−
1
2

t2E[B2
s B2

t ] +
1
4

t2E[B2
s ]

=
1
4

E[B2
s B4

t ]−
1
2

t2E[B2
s B2

t ] +
1
4

t2s.

Now, we investigate the two respective expectations.
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• For E[B2
s B2

t ], we have:

E[B2
s B2

t ] = E[B2
s (Bt − Bs)

2 − B4
s + 2B3

s Bt] = E[B2
s ]E[(Bt − Bs)

2]− E[B4
s ] + 2E[B3

s Bt]

= s(t − s)− 3s2 + 2E[B3
s (Bt − Bs) + B4

s ] = s(t − s)− 3s2 + 2E[B3
s (Bt − Bs)] + 2E[B4

s ]

= s(t − s)− 3s2 + 2 · 0 · (t − s) + 2 · 3s2 = st + 2s2.

• For E[B2
s B4

t ], we have:

E[B2
s B4

t ] = E[B2
s (Bt − Bs)

4 + 4B3
t B3

s − 6B2
t B4

s + 4BtB5
s − B6

s ]

= E[B2
s (Bt − Bs)

4] + 4E[B3
t B3

s ]− 6E[B2
t B4

s ] + 4E[BtB5
s ]− E[B6

s ]

= s · 3 · (t − s)2 + 4E[B3
t B3

s ]− 6E[B2
t B4

s ] + 4E[BtB5
s ]− 15s3

= 3t2s − 6ts2 − 12s3 + 4E[B3
t B3

s ]− 6E[B2
t B4

s ] + 4E[BtB5
s ].

Now, we have to evaluate the next terms:

– For E[BtB5
s ], we have:

E[BtB5
s ] = E[B5

s (Bt − Bs) + B6
s ] = 15s3.

– For E[B2
t B4

s ], we have:

E[B2
t B4

s ] = E[B4
s (Bt − Bs)

2 + 2B5
s Bt − B6

s ] = 3s2 · (t − s) + 30s3 − 15s3 = 3ts2 + 12s3.

– For E[B3
t B3

s ], we have:

E[B3
t B3

s ] = E[B3
s (Bt − Bs)

3 + 3B4
s B2

t − 3B5
s Bt + B6

s ]

= 0 + 3(3ts2 + 12s3)− 3(15s3) + 15s3 = 9ts2 + 6s3.

Now, we can combine all the calculations together:

E[B2
s B4

t ] = 3t2s − 6ts2 − 12s3 + 4(9ts2 + 6s3)− 6(3ts2 + 12s3) + 4(15s3)

= 3t2s + 12ts2.

Hence, we may conclude that:

E

[(
Bs

∫ t

0
BrdBr

)2
]
=

1
4
(3t2s + 12ts2)− 1

2
t2(st + 2s2) +

1
4

t2s = t2s + 3ts2 − 1
2

st3 + s2t2 .
⌟

Problem III.5. (Exercise 3.17 on [Øksendal]). Let (Ω,F , P) be a probability space and let X : Ω → R be a
random variable with E[|X|] < ∞. If G ⊂ F is a finite σ-algebra, then there exists a partition Ω =

⋃n
i=1 Gn

such that G consists of ∅ and unions of some (or all) of G1, · · · , Gn.

(a) Explain why E[X | G ](ω) is constant on each Gi.
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Proof. Here, we may consider G as a random variable, namely:

G =
n

∑
i=1

ai1Gi , where Gi ∈ G .

Then, the conditional expectation for each given ω ∈ Gj is:

E[X|G ](ω) =
n

∑
i=1

ai1Gi = aj.

(b) Assume that P[Gi] > 0. Show that:

E[X | G ](ω) =

∫
Gi

XdP

P(Gi)
for ω ∈ Gi.

Proof. Here, we just need to verify that:

∫
Gi

E[X | G ](ω)dP(ω) =
∫

Gi

∫
Gi

XdP

P(Gi)
dP =

∫
Gi

XdP

P(Gi)

∫
Gi

dP =

∫
Gi

XdP

P(Gi)
· P(Gi) =

∫
Gi

XdP,

so it satisfies the condition for conditional expectation.

(c) Suppose X assumes only finitely many values a1, · · · , am. Then from elementary probability theory:

E[X | Gi] =
m

∑
k=1

akP[X = ak | Gi].

Compare with (b) and verify that:

E[X | Gi] = E[X | G ](ω) for ω ∈ Gi.

Thus, we may regard the conditional expectation as defined as a (substantial) generalization of the
conditional expectation in the elementary probability theory.

Proof. Here, consider ω ∈ Gi being arbitrary, we have:

E[X | G ](ω) =

∫
Gi

XdP

P(Gi)
=

∑m
k=1 akP(X = ak ∧ ak ∈ Gi)

P(Gi)

=
m

∑
k=1

akP(X = ak ∧ ak ∈ Gi)

P(Gi)
=

m

∑
k=1

akP(X = ak | Gi) = E[X | Gi],

so the general definition is aligned to the elementary probability theory definition.
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Problem III.6. (Exercise 3.18 on [Øksendal]). Let Bt be 1-dimensional Brownian motion and let σ ∈ R be
constant. Prove directly from the definition that:

Mt := exp
(

σBt −
1
2

σ2t
)

; t ≥ 0

is a martingale.
Hint: If s > t, then E[exp(σBs − 1

2 σ2s) | Ft] = E
[

exp
(
σ(Bs − Bt)

)
× exp(σBt − 1

2 σ2s) | Ft
]
.

Proof. Here, by the hint, we may notice that:

E[Ms | Ft] = E

[
exp

(
σBs −

1
2

σ2s
)
| Ft

]
= E

[
exp

(
σ(Bs − Bt)

)
· exp

(
σBt −

1
2

σ2s
)
| Ft

]
= E

[
exp

(
σ(Bs − Bt)

)
| Ft

]
· E

[
exp

(
σBt −

1
2

σ2s
)
| Ft

]
= exp

(
1
2

σ2(s − t)
)
· exp

(
−1

2
σ2s
)
· E[exp(σBt) | Ft]

= exp
(
−1

2
σ2t
)
· exp(σBt)

= exp
(

σBt −
1
2

σ2t
)
= Mt.

Moreover, we consider the expectation of Mt, namely:

E[|Mt|] = E

[∣∣∣∣exp
(

σBt −
1
2

σ2t
)∣∣∣∣] = E

[
exp

(
σBt −

1
2

σ2t
)]

= exp
(
−1

2
σ2t
)

E[exp(σBt)] = exp
(
−1

2
σ2t
)

exp
(

1
2

σ2t
)
= 1 < +∞.

Hence, we have shown that Mt is martingale.
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IV Problem Set 4

Problem IV.1. (Exercise 4.1 on [Øksendal]). Use Itô’s formula to write the following stochastic processes
Yt in the standard form:

dYt = u(t, ω)dt + v(t, ω)dBt

for suitable choices of u ∈ Rn, v ∈ Rn×m and dimensions n, m:

(a) Yt = B2
t , where Bt is 1-dimensional.

Solution. Here, we note that:

Yt = B2
t =

∫ t

0
ds + 2

∫ t

0
BsdBs,

hence it is in standard form as:
dYt = dt + Btdt . ⌟

(b) Yt = 2 + t + eBt , where Bt is 1-dimensional.

Solution. Here, we may apply Itô formula, namely:

dYt =
∂

∂t
[2 + t + eBt ]dt +

∂

∂x
[2 + t + eBt ]dBt +

1
2

∂2

∂x2 [2 + t + eBt ](dBt)
2

= dt + eBt dBt +
1
2

eBt dt =
(

1 +
1
2

eBt

)
dt + eBt dBt .

⌟

(c) Yt = B2
1(t) + B2

2(t), where (B1, B2) is 2-dimensional.

Solution. Here, we may apply the general Itô formula as:

dYt =
∂

∂t
[B2

1(t) + B2
2(t)]dt +

∂

∂B1
[B2

1(t) + B2
2(t)]dB1 +

∂

∂B2
[B2

1(t) + B2
2(t)]dB2+

1
2

∂2

∂B2
1
[B2

1(t) + B2
2(t)](dB1)

2 +
1
2

∂2

∂B2
2
[B2

1(t) + B2
2(t)](dB1)

2 +
∂2

∂B1∂B2
[B2

1(t) + B2
2(t)](dB1dB2)

= 0dt + 2B1dB1 + 2B2dB2 + dt + dt + 0δ1,2dt

= 2dt + 2B1(t)dB1(t) + 2B2(t)dB2(t) .
⌟

(d) Yt = (t0 + t, Bt), where Bt is 1-dimensional.

Solution. Here, we need to consider the process component-wise, denoted Yt = (Y(1)
t , Y(2)

t ).
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For Y(1)
t , we have:

d(Y(1)
t ) =

∂

∂t
[t0 + t]dt +

∂

∂Bt
[t0 + t]dBt +

1
2

∂

∂B2
t
[t0 + t](dBt)

2 = dt.

For Y(2)
t , we have:

d(Y(2)
t ) =

∂

∂t
[Bt]dt +

∂

∂Bt
[Bt]dBt +

1
2

∂

∂B2
t
[Bt](dBt)

2 = dBt.

Hence, the process can be written in standard form as:

dYt =

(
1
0

)
dt +

(
0
1

)
dBt .

⌟

(e) Yt =
(

B1(t) + B2(t) + B3(t), B2
2(t)− B1(t)B3(t)

)
, where (B1, B2, B3) is 3-dimensional.

Solution. Again, we shall consider the process component-wise, denoted Yt = (Y(1)
t , Y(2)

t ).
For Y(1)

t , we have:

dY(1)
t =

∂

∂t
[B1 + B2 + B3]dt +

∂

∂B1
[B1 + B2 + B3]dB1 +

∂

∂B2
[B1 + B2 + B3]dB2 +

∂

∂B3
[B1 + B2 + B3]dB3+

1
2

∂

∂B2
1
[B1 + B2 + B3](dB1)

2 +
1
2

∂

∂B2
2
[B1 + B2 + B3](dB2)

2 +
1
2

∂

∂B2
3
[B1 + B2 + B3](dB3)

2+

∂

∂B1∂B2
[B1 + B2 + B3]dB1dB2 +

∂

∂B1∂B3
[B1 + B2 + B3]dB1dB3 +

∂

∂B2∂B3
[B1 + B2 + B3]dB2dB3

= dB1(t) + dB2(t) + dB3(t).

For Y(2)
t , we have:

dY(2)
t =

∂

∂t
[B2

2 − B1B3]dt +
∂

∂B1
[B2

2 − B1B3]dB1 +
∂

∂B2
[B2

2 − B1B3]dB2 +
∂

∂B3
[B2

2 − B1B3]dB3+

1
2

∂

∂B2
1
[B2

2 − B1B3](dB1)
2 +

1
2

∂

∂B2
2
[B2

2 − B1B3](dB2)
2 +

1
2

∂

∂B2
3
[B2

2 − B1B3](dB3)
2+

∂

∂B1∂B2
[B2

2 − B1B3]dB1dB2 +
∂

∂B1∂B3
[B2

2 − B1B3]dB1dB3 +
∂

∂B2∂B3
[B2

2 − B1B3]dB2dB3

= − B3dB1 + 2B2dB2 − B1dB3 + (dB2)
2 = dt − B3(t)dB1(t) + 2B2(t)dB2(t)− B1(t)dB3(t).

Hence, when we combine the process together, we have:

dYt =

(
0
1

)
dt +

(
1

−B3(t)

)
dB1(t) +

(
1

2B2(t)

)
dB2(t) +

(
1

−B1(t)

)
dB3(t) .

⌟
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Problem IV.2. (Exercise 4.2 on [Øksendal]). Use Itô formula to prove that:∫ t

0
B2

s dBs =
1
3

B3
t −

∫ t

0
Bsds.

Proof. Here, we write B3
t in terms of differential form:

dB3
t =

∂

∂t
[B3

t ]dt +
∂

∂Bt
[B3

t ]dBt +
1
2
· ∂2

∂B2
t
[B3

t ](dBt)
2 = 3Btdt + 3B2

t dBt,

and hence if we were to write them in terms of standard form, we have:

B3
t = 3

∫ t

0
Bsds + 3

∫ t

0
B2

s dBs,

and if we were to divide everything by 3 and move around, we have:∫ t

0
B2

s dBs =
1
3

B3
t −

∫ t

0
Bsds,

as desired.

Problem IV.3. (Exercise 4.3 on [Øksendal]). Let Xt, Yt be Itô processes in R. Prove that:

d(XtYt) = XtdYt + YtdXt + dXt · dYt.

Deduce the following general integration by parts formula:∫ t

0
XsdYs = XtYt − X0Y0 −

∫ t

0
YsdXs −

∫ t

0
dXs · dYs.

Proof. Here, we may use the general Itô formula to find the differential form as:

d(XtYt) =
∂

∂t
[XtYt]dt +

∂

∂Xt
[XtYt]dXt +

∂

∂Yt
[XtYt]dYt+

1
2

∂2

∂X2
t
[XtYt](dXt)

2 +
1
2

∂2

∂Y2
t
[XtYt](dYt)

2 +
∂2

∂Xt∂Yt
[XtYt]dXtdYt

= YtdXt + XtdYt + dXtdYt.

Then, we can write the differential form in standard form:

XtYt = X0Y0 +
∫ t

0
YsdXs +

∫ t

0
XsdYs +

∫ t

0
dXs · dYs.

Then, we can move around the terms to get the integration by parts formula:∫ t

0
XsdYs = XtYt − X0Y0 −

∫ t

0
YsdXs −

∫ t

0
dXs · dYs.
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Problem IV.4. (Exercise 4.4 on [Øksendal]). Exponential martingales.
Suppose θ(t, ω) =

(
θ1(t, ω), · · · , θn(t, ω)

)
∈ Rn with θk(t, ω) ∈ V [0, T] for k = 1, · · · , n, where T ≤ ∞.

Define:
Zt = exp

[∫ t

0
θ(s, ω)dB(s)− 1

2

∫ t

0
θ2(s, ω)ds

]
; 0 ≤ t ≤ T,

where B(s) ∈ Rn and θ2 = θ · θ as the dot product.

(a) Use Itô’s formula to prove that:
dZt = Ztθ(t, ω)dB(t).

Proof. Here, we first consider another process Xt such that:

dXt = θ(t, ω)dB(t)− 1
2

θ2(t, ω)dt.

Here, we have Zt = exp(Xt), and we use the Itô formula on a given process:

dZt =
∂

∂t
[exp(Xt)]dt +

∂

∂Xt
[exp(Xt)]dXt +

1
2

∂

∂X2
t
[exp(Xt)](dXt)

2

= 0dt + exp(Xt)dXt +
1
2

exp(Xt)(dXt)
2

= exp(Xt)

(
θ(t, ω)dB(t)− 1

2
θ2(t, ω)dt

)
+

1
2

exp(Xt)

(
θ(t, ω)dB(t)− 1

2
θ2(t, ω)dt

)2

= exp(Xt)θ(t, ω)dB(t)− 1
2

exp(Xt)θ
2(t, ω)dt +

1
2

exp(Xt)θ
2(t, ω)(dB(t))2−

1
4

exp(Xt)θ
3(t, ω)dB(t)dt +

1
8

exp(Xt)θ
4(t, ω)(dt)2

= exp(Xt)θ(t, ω)dB(t)− 1
2

exp(Xt)θ
2(t, ω)dt +

1
2

exp(Xt)θ
2(t, ω)dt

= exp(Xt)θ(t, ω)dB(t) = Ztθ(t, ω)dB(t),

as desired.

(b) Deduce that Zt is a martingale for t ≤ T, provided that:

Ztθk(t, ω) ∈ V [0, T] for 1 ≤ k ≤ n.

Proof. By part (a), we note that Zt can be written as:

Ztθk(t, ω) =
∫ t

0
Zsθ(t, ω)dB(t) =

∫ t

0

n

∑
k=1

Zsθk(t, ω)dBk(t) =
n

∑
k=1

∫ t

0
Zsθk(t, ω)dBk(t).

Note that since Zsθk(t, ω) ∈ V [0, T] for all k, the integral
∫ t

0 Zsθk(t, ω)dBk(t) must be martingale, and a
finite sum of martingale is still martingale.
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V Problem Set 5

Problem V.1. (Exercise 4.13 on [Øksendal]). Let dXt = u(t, ω)dt+ dBt, where u ∈ R and Bt ∈ R, be an Itô
process and assume for simplicity that u is bounded. Then we know that unless u = 0 the process Xt is not
an Ft-martingale. However, it turns out that we can construct an Ft-martingale from Xt by multiplying
by a suitable exponential martingale. More precisely, define:

Yt = Xt Mt,

where:
Mt = exp

(
−
∫ t

0
u(r, ω)dBr −

1
2

∫ t

0
u2(r, ω)dr

)
.

Use Itô’s formula to prove that Yt is an Ft-martingale.

Proof. Here, we think about the Itô formula on Yt by considering the product rule:

dYt = d(Xt Mt) = XtdMt + MtdXt + dXtdMt

Recall from Problem IV.4(a), we have:

dMt = −Mtu(t, ω)dBt,

and hence we can continue the product rule as:

dYt = Xt Mt
(
− u(t, ω)dBt

)
+ Mt

(
u(t, ω)dt + dBt

)
+
(
u(t, ω)dt + dBt

)
Mt
(
− u(t, ω)dBt

)
= −Xt Mtu(t, ω)dBt + Mtu(t, ω)dt + MtdBt − Mtu(t, ω)dt

= Mt
(
1 − Xtu(t, ω)

)
dBt.

Hence, the Itô formula of Yt contains to dt terms, and recall from Problem IV.4(b), since u is a Itô process,
so Mt is martingale, thus E[|Mt|] < +∞. Consider for Xt that:

E[|Xt|] = E

[∣∣∣∣∫ t

0
u(r, ω)dr +

∫ t

0
dBr

∣∣∣∣]
≤ E

[∣∣∣∣∫ t

0
u(r, ω)dr

∣∣∣∣]+ E

[∣∣∣∣∫ t

0
dBr

∣∣∣∣] ≤ E

[∫ t

0

∣∣u(r, ω)
∣∣dr
]
+ E[|Bt|] < +∞,

since u(r, ω) is bounded and E[|Bt|2] = t, so we have E[|Xt Mt|] ≤ E[|Xt|] · E[|Mt|] < +∞, hence have
proven that Yt is, in fact, a Ft martingale.

Problem V.2. (Exercise 4.16 on [Øksendal]). If Y is an FT-measurable random variable such that E[|Y|2] <
∞, then the process:

Mt := E[Y | Ft]; 0 ≤ t ≤ T

is a martingale with respect to {Ft}0≤t≤T .
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(a) Show that E[M2
t ] < ∞ for all t ∈ [0, T].

Proof. Note we have Ft as a σ-algebra, so we have:

E
[
(E[Y | Ft])

2] ≤ E[Y2] < +∞,

as desired.

(b) According to the martingale representation theorem, there exists a unique process g(t, ω) ∈ V(0, T)
such that:

Mt = E[M0] +
∫ t

0
g(s, ω)dB(s); t ∈ [0, T].

Find g in the following cases:

1. Y(ω) = B2(T).

2. Y(ω) = B3(T).

3. Y(ω) = exp
(
σB(T)

)
, where σ ∈ R is a constant.

Hint: Use that exp
(
σB(t)− 1

2 σ2t
)

is a martingale.

Solution.

1. Now, we have:
Mt = E[B2

T | Ft].

Here, we decompose that:

B2
T =

(
Bt + (BT − Bt)

)2
= B2

t + 2Bt(BT − Bt) + (BT − Bt)
2,

so we have the conditional expectation as:

E[B2
T | Ft] = E[B2

t + 2Bt(BT − Bt) + (BT − Bt)
2 | Ft]

= E[B2
t | Ft] + 2E[Bt | Ft]E[BT − Bt | Ft] + E[(BT − Bt)

2 | Ft]

= B2
t + 2BtE[Bt − Bt] + E[(BT − Bt)

2] = B2
t + T − t.

Then, we apply the Itô formula and obtain that:

dMt = −dt + 2BtdBt +
1
2
· 2dt = 2BtdBt,

hence we have g(s, ω) = 2Bs(ω) .

2. Now, we have:
Mt = E[B3

T | Ft],

and we similarly construct the decomposition as:

B3
T =

(
Bt + (BT − Bt)

)3
= B3

t + 3B2
t (BT − Bt) + 3Bt(BT − Bt)

2 + (B2
T − Bt)

3.
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Now, we apply the conditional expectation as:

E[B3
T | Ft] = E[B3

t + 3B2
t (BT − Bt) + 3Bt(BT − Bt)

2 + (B2
T − Bt)

3 | Ft]

= E[B3
t | Ft] + 3E[B2

t | Ft]E[BT − Bt | Ft]

+ 3E[Bt | Ft]E[(BT − Bt)
2 | Ft] + E[(B2

T − Bt)
3 | Ft]

= B3
t + 3Bt(T − t) + 3B2

t · 0 + T − t = B3
t + 3TBt − 3tBt.

Then, we apply the Itô formula and obtain that:

dMt = −3Btdt + (3B2
t + 3T − 3t)dBt +

1
2
· 6Btdt

= 3(B2
t + T − t)dBt,

and hence we have g(s, ω) = 3(B2
t + T − t) .

3. Here, we have:
Mt = E[exp(σBT) | Ft],

and we consider that:

exp(σBT) = exp
(
σ(Bt + (BT − Bt))

)
= exp(σBt) exp

(
σ(BT − Bt)

)
,

and we hence have that:

E[exp(σBT) | Ft] = E[exp(σBt) exp
(
σ(BT − Bt)

)
| Ft]

= E[exp(σBt) | Ft] · E[exp
(
σ(BT − Bt)

)
| Ft]

= exp(σBt) · exp
(

σ2(T − t)
2

)
.

Hence, we apply Itô formula to obtain that:

dMt = Mt

(
−σ2

2

)
dt + Mt · σdBt +

1
2

Mt · σ2dt = Mt · σdBt,

and hence we have g(s, ω) = σ exp(σBt) · exp
(

σ2(T − t)
2

)
. ⌟

Problem V.3. (Exercise 5.7 on [Øksendal]). The mean-reverting Ornstein-Uhlenbeck process is the solution
Xt of the stochastic differential equation:

dXt = (m − Xt)dt + σdBt,

where m, σ are real constants, and Bt ∈ R.

(a) Solve this equation using the integrating factor similar to et.
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Solution. Here, we multiply by the integration factor that:

Ft = exp(t), and so dFt = exp(t)dt.

Then, we consider the product rule as:

d(FtXt) = FtdXt + XtdFt + dFtdXt

= exp(t)
(
(m − Xt)dt + σdBt

)
+ exp(t)Xtdt + exp(t)dt

(
(m − Xt)dt + σdBt

)
= exp(t)mdt + exp(t)σdBt.

Thereby, we write the equation in standard form:

FtXt = F0X0 + m
∫ t

0
exp(s)ds + σ

∫ t

0
exp(x)dBs = F0X0 + m

(
exp(t)− 1

)
+ σ

∫ t

0
exp(s)dBs,

exp(t)Xt = X0 + m exp(t)− m + σ
∫ t

0
exp(s)dBs,

Xt = X0 exp(−t) + m − m exp(−t) + σ
∫ t

0
exp(s − t)dBs .

⌟

(b) Find E[Xt] and Var[Xt] := E[(Xt − E[Xt])2].

Solution. For the expectation, we have:

E[Xt] = E

[
X0 exp(−t) + m − m exp(−t) + σ

∫ t

0
exp(s − t)dBs

]
= X0 exp(−t) + m − m exp(−t) + σ E

[∫ t

0
exp(s − t)dBs

]
︸ ︷︷ ︸

deterministic, 0

= X0 exp(−t) + m − m exp(−t) .

For the variance, we hence have:

Var[Xt] := E[(Xt − E[Xt])
2] = E

[(
σ
∫ t

0
exp(s − t)dBs

)2
]

= σ2E

[(∫ t

0
exp(s − t)dBs

)2
]
= σ2

∫ t

0
exp

(
2(s − t)

)
ds

= σ2

[
exp

(
2(s − t)

)
2

]s=t

s=0

= σ2
(

1
2
− exp(−2t)

2

)
=

σ2

2
(
1 − exp(−2t)

)
.

⌟
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Problem V.4. (Exercise 5.8 on [Øksendal]). Solve the (2-dimensional) stochastic differential equation:

dX1(t) = X2(t)dt + αdB1(t)

dX2(t) = −X1(t)dt + βdB2(t)

where
(

B1(t), B2(t)
)

is 2-dimensional Brownian motion and α, β are constants.
This is a model of a vibrating string subject to a stochastic force.

Solution. Here, we denote X(t) :=
(
X1(t), X2(t)

)
and B(t) :=

(
B1(t), B2(t)

)
, so our differential equation

becomes:

dX(t) =

(
0 1
−1 0

)
X(t)dt +

(
α 0
0 β

)
dB(t).

Here, we shall use the integrating factor that:

F(t) = exp

(
t

(
0 1
−1 0

))
=

∞

∑
n=0

tn

n!

(
0 1
−1 0

)n

.

We note that the matrix has order 4, that is:(
0 1
−1 0

)2

=

(
−1 0
0 −1

)
,

(
0 1
−1 0

)3

=

(
0 −1
1 0

)
, and

(
0 1
−1 0

)4

=

(
1 0
0 1

)
.

Hence, we have the matrix exponential as:

F(t) =

(
∑n∈[0]4

tn

n! − ∑n∈[2]4
tn

n! ∑n∈[1]4
tn

n! − ∑n∈[3]4
tn

n!

∑n∈[3]4
tn

n! − ∑n∈[1]4
tn

n! ∑n∈[0]4
tn

n! − ∑n∈[2]4
tn

n!

)
=

(
cos t sin t
− sin t cos t

)
.

Hence, we have the solution as:

X(t) = F(t)X(0) + F(t)
∫ t

0
F(−s)

(
α 0
0 β

)
Btds

=

(
X1(0) cos t + X2(0) sin t
−X1(0) sin t + X2(0) cos t

)
+
∫ t

0

(
cos t sin t
− sin t cos t

)(
cos(−s) sin(−s)
− sin(−s) cos(−s)

)(
α 0
0 β

)(
dB1(s)
dB2(s)

)

=

(
X1(0) cos t + X2(0) sin t
−X1(0) sin t + X2(0) cos t

)
+
∫ t

0

(
α cos(t − s) β sin(t − s)
−α sin(t − s) β cos(t − s)

)(
dB1(s)
dB2(s)

)
.

Hence, we have the solutions, respectively, as:

X1(t) = X1(0) cos t + X2(0) sin t + α
∫ t

0
cos(t − s)dB1(s) + β

∫ t

0
sin(t − s)dB2(s) ,

X2(t) = −X1(0) sin t + X2(0) cos t +−α
∫ t

0
sin(t − s)dB1(s) + β

∫ t

0
cos(t − s)dB2(s) .

⌟
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Problem V.5. (Exercise 5.16 on [Øksendal]). For more general nonlinear stochastic differential equation
of the form:

dXt = f (t, Xt)dt + c(t)XtdBt, X0 = x, (3)

where f : R × R → R and c : R → R are given continuous (deterministic functions).

(a) Define the ‘integration factor’:

Ft = Ft(ω) = exp
(
−
∫ t

0
c(s)dBs +

1
2

∫ t

0
c2(s)ds

)
.

Show that (3) can be written as:
d(FtXt) = Ft · f (t, Xt)dt. (4)

Proof. Here, let’s first derive dFt using Itô formula with dXt =
1
2 c2(t)dt − c(t)dBt:

dFt = Ft

(
dXt +

1
2
(dXt)

2
)
= Ft

(
1
2

c2(t)dt − c(t)dBt

)
+

1
2

Ftc2(t)dt = Ft
(
c2(t)dt − c(t)dBt

)
.

Therefore, we have the product rule resulting in:

d(FtXt) = FtdXt + XtdFt + dFtdXt

= Ft
(

f (t, Xt)dt + c(t)XtdBt
)
+ XtFt

(
c2(t)dt − c(t)dBt

)
+ Ft

(
c2(t)dt − c(t)dBt

)
dBt
(

f (t, Xt)dt + c(t)XtdBt
)

= Ft f (t, Xt)dt,

as desired.

(b) Now define:
Yt(ω) = Ft(ω)Xt(ω)

so that:
Xt = F−1

t Yt. (5)

Deduce that equation (4) gets the form:

dYt(ω)

dt
= Ft(ω) · f

(
t, F−1

t (ω)Yt(ω)
)
, Y0 = x. (6)

Note that this is just a deterministic differential equation in the function t 7→ Yt(ω), for each ω ∈ Ω.
We can therefore solve (6) with ω as a parameter to find Yt(ω) and then obtain Xt(ω) from (5).

Proof. Here, from part (a), we have:

d
(

Ft(ω)Xt(ω)
)
= Ft f (t, Xt)dt = Ft f

(
t, F−1

t (ω)Xt(ω)
)
dt,

which completes the proof when dividing both sides by dt.
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(c) Apply this method to solve the stochastic differential equation:

dXt =
1

Xt
dt + αXtdBt, X0 = x > 0,

where α is constant.

Solution. Here, we have the integrating factor as:

Ft = exp
(
−
∫ t

0
αdBs +

1
2

∫ t

0
α2ds

)
= exp

(
−α

∫ t

0
dBs +

α2

2

∫ t

0
ds
)
= exp

(
−αBt +

α

2
t
)

.

Then, by (b), let Yt := FtXt, we have that:

dYt

dt
= exp

(
−αBt +

α

2
t
)
· 1

exp
(
−αBt +

α
2 t
)

Yt
= Yt.

Hence, this becomes a trivial ODE, that is:

YtdYt = dt, and the solution is Yt =
√

2t + Y2
0 .

Therefore, we can deduce Xt as:

Xt = exp
(

αBt −
α

2
t
)
·
√

2t + x2 . ⌟

(d) Apply the method to study the solutions of the stochastic differential equation:

dXt = Xγ
t dt + αXtdBt, X0 = x > 0,

where α and γ are constants.
For what values of γ do we get explosion?

Solution. Here, we still have the integrating factor as:

Ft = exp
(
−
∫ t

0
αdBs +

1
2

∫ t

0
α2ds

)
= exp

(
−α

∫ t

0
dBs +

α2

2

∫ t

0
ds
)
= exp

(
−αBt +

α

2
t
)

.

Then, by (b), let Yt := FtXt, we have that:

dYt

dt
= exp

(
−αBt +

α

2
t
) (

exp
(
−αBt +

α

2
t
)

Yt

)γ
= exp

((
−αBt +

α

2
t
)
(1 + γ)

)
Yγ

t .

Again, this is still a separable ODE, and we have:

Y−γ
t dYt = exp

((
−αBt +

α

2
t
)
(1 + γ)

)
dt.

However, we note have a closed-form solution, and the solution is:

Yt =


(∫ t

0 exp
((
−αBs +

α
2 s
)
(1 + γ)

)
ds(1 − γ)

)γ−1
when γ 6= 1

exp
(∫ t

0 exp
((
−αBs +

α
2 s
))

ds
)

when γ = 1.
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Hence, we have that:

Xt =

exp
(
αBt − α

2 t
) (∫ t

0 exp
((
−αBs +

α
2 s
)
(1 + γ)

)
ds(1 − γ)

)γ−1
when γ 6= 1

exp
(
αBt − α

2 t
)

exp
(∫ t

0 exp
((
−αBs +

α
2 s
))

ds
)

when γ = 1.

Note that the solution would explode when γ > 1. ⌟

Problem V.6. (Exercise 5.17 on [Øksendal]). The Gronwall inequality.
Let v(t) be a nonnegative function such that:

v(t) ≤ C + A
∫ t

0
v(s)ds for 0 ≤ t ≤ T

for some constants C, A, where A ≥ 0. Prove that:

v(t) ≤ C exp(At) for 0 ≤ t ≤ T.

Hint: We may assume A 6= 0. Define w(t) =
∫ t

0 v(s)ds. Then w′(t) ≤ C + Aw(t). Deduce that:

w(t) ≤ C
A
(

exp(At)− 1
)

by considering f (t) := w(t) exp(−At).

Proof. Consider that w(t) =
∫ t

0 v(s)ds, so by using Leibniz rule, its derivative is:

w′(t) = v(t) ≤ C + A
∫ t

0
v(s)ds = C + Aw(t).

Then, we consider f (t) := w(t) exp(−At), and we take its derivative using the product rule:

f ′(t) = w′(t) exp(−At)− Aw(t) exp(−At) = exp(−At)
(
w′(t)− Aw(t)

)
≤ C exp(−At).

Again, by the Leibniz rule and the previous inequality, while noting f (0) = 0, we have:

f (t) =
∫ t

0
f ′(s)ds ≤

∫ t

0
C exp(−As)ds = −C

A
(

exp(−At)− 1
)
.

Recall that exp(−At) is always positive, we can divide both sides by it:

w(t) =
f (t)

exp(−At)
≤

− C
A
(

exp(−At)− 1
)

exp(−At)
=

C
A
(

exp(At)− 1
)
.

Thus, we can extend the conclusion to v(t), in which:

v(t) ≤ C + Aw(t) = C + C
(

exp(At)− 1
)
= C exp(At),

which completes the proof.
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Problem V.7. Let X(t) solve the Langevin equation:

dX(t) = −µX(t)dt + σdBt

and suppose that X0 is a N
(

0, σ2

2µ

)
random variable. Show that:

E[X(s)X(t)] =
σ2

2µ
e−µ|t−s|, t, s ≥ 0.

Proof. Here, we first solve for the solution of Lagevin equation using the integrating factor:

F(t) = exp(µt), hence we have dF(t) = µ exp(µt)dt.

Then, we have the product rule as:

d
(

F(t)X(t)
)
= F(t)dX(t) + X(t)dF(t) + dF(t)dX(t)

= exp(µt)
(
− µX(t)dt + σdBt

)
+ µ exp(µt)X(t)dt

= σ exp(µt)dBt,

and so the solution to the Lagevin equation is:

F(t)X(t) = F(0)X(0) +
∫ t

0
σ exp(µs)dBs = X(0) + σ

∫ t

0
exp(µs)dBs,

and hence we have:
X(t) = exp(−µt)X(0) + σ

∫ t

0
exp

(
µ(s − t)

)
dBs.

Then, we think about the expectation as:

E[X(s)X(t)]

= E

[(
exp(−µt)X(0) + σ

∫ t

0
exp

(
µ(u − t)

)
dBu

)(
exp(−µs)X(0) + σ

∫ s

0
exp

(
µ(u − s)

)
dBu

)]
= exp

(
− µ(t + s)

)
E[X2(0)] + exp(−µt)σE

[
X(0)

∫ s

0
exp

(
µ(u − s)

)
dBu

]
+ exp(−µs)σE

[
X(0)

∫ t

0
exp

(
µ(u − t)

)
dBu

]
+ σ2E

[∫ t

0
exp

(
µ(u − t)

)
dBu

∫ s

0
exp

(
µ(u − s)

)
dBu

]
= exp

(
− µ(t + s)

)
· σ2

2µ
+ exp(−µt)σE[X(0)]E

[∫ s

0
exp

(
µ(u − s)

)
dBu

]
+ exp(−µs)σE[X(0)]E

[∫ t

0
exp

(
µ(u − t)

)
dBu

]
+ σ2E

[∫ t

0
exp

(
µ(u − t)

)
dBu

∫ s

0
exp

(
µ(u − s)

)
dBu

]
= exp

(
− µ(t + s)

)
· σ2

2µ
+ σ2E

[∫ t

0
exp

(
µ(u − t)

)
dBu

∫ s

0
exp

(
µ(u − s)

)
dBu

]
.
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Now, the main goal is to evaluate the last integral. Without loss of generality, we assume that 0 ≤ t ≤ s:

E

[∫ t

0
exp

(
µ(u − t)

)
dBu

∫ s

0
exp

(
µ(u − s)

)
dBu

]
= E

[∫ t

0

∫ s

0
exp

(
µ(u − t)

)
exp

(
µ(v − s)

)
dBvdBu

]
=
∫

Ω

∫
[0,t]

∫
[0,s]

exp
(
µ(u + v)− (t + s)

)
dBv(ω)dBu(ω)dω

= E

[∫ t

0
exp

(
2µv − µ(t + s)

)
dBv(ω) +

∫ s

t
dBu(ω)

]
= exp

(
− µ(t + s)

) ∫ t

0
exp(2µv)dv =

1
2µ

exp
(
− µ(t + s)

)[
exp(2µv)

]v=t

v=0

=
1

2µ
exp

(
− µ(t + s)

)(
exp(2µt)− 1

)
.

When plugged in together, we have:

E[X(s)X(t)] = exp
(
− µ(t + s)

)
· σ2

2µ
+

σ2

2µ
exp

(
− µ(t + s)

)(
exp(2µt)− 1

)
=

σ2

2µ
exp

(
− µ(s − t)

)
.

Note that since s ≥ t is by our assumption, and it would otherwise be t− s, and we can conclude by |t− s|,
which result in:

E[X(s)X(t)] =
σ2

2µ
exp

(
− µ|t − s|

)
,

as desired.

Problem V.8. Prove that if p ≥ 2 and X ∈ V([0, T]), then:

E

[
sup

t∈[0,T]

∣∣∣∣∫ t

0
XsdBs

∣∣∣∣p
]
≤ CpT

p−2
2 E

[∫ T

0
|Xs|pds

]
for some constant Cp > 0 depending only on p.

Proof. First of all, we have Itô isometry that:

E

[∣∣∣∣∫ t

0
XsdBs

∣∣∣∣2
]
= E

[∫ t

0
|Xs|2ds

]
.

Given the absolute value, we have non-negativity, and hence:

E

[
sup

t∈[0,T]

∣∣∣∣∫ t

0
XsdBs

∣∣∣∣2
]
≤ E

[∫ T

0
|Xs|2ds

]
.

This part is partially adapted from external source. Here, we consider the function φ:

φ(x) = |x|p.

https://www.yelmaazouz.org/content/documents/BGD_inequalities.pdf#page=3
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Here, we have:
φ′(x) = sgn(x)p|x|p−1, and φ′′(x) = p(p − 1)|x|p−2 a.a.

Note that
∫ t

0 XsdBs =: M is a martingale, and we denote its supremum by M∗, and by Martingale repre-
sentation theorem, it can be written as:

Mp =
∫ T

0
sgn(Ms)p|Ms|p−1dMs +

1
2

∫ T

0
p(p − 1)|x|p−2(dMs)

2.

In particular, the expectation is:

E[|M|p] ≤ p(p − 1)
2

E[|M∗|p−2|M|2].

Then, to utilize the Hölder inequality with q = p
p−2 , we have:

E[|M∗|p−2|M|2] ≤ E[|M∗|p]
p−2

p E[|M|p]
p
2 · T

p−2
p · p

2

Then, we have:
E[|M∗|p] ≤ CpT

p−2
2 E[|Xs|p].
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VI Problem Set 6

Problem VI.1. Let us consider the one-dimensional SDE:

dXt =

(√
1 + X2

t +
1
2

Xt

)
dt +

√
1 + X2

t dBt, X0 = x ∈ R.

(a) Does this equation admit strong solutions?

Solution. Here, this equation admits strong solution. First, we denote:

b(t, x) =
√

1 + x2 +
1
2

x and σ(t, x) =
√

1 + x2.

We can verify this by showing that it satisfies the existence and uniqueness theorem for SDEs.

• Linear growth: We note that:

|b(t, x)|+ |σ(t, x)| =
∣∣∣∣√1 + x2 +

1
2

x
∣∣∣∣+ ∣∣∣√1 + x2

∣∣∣
≤ 1

2
|x|+ 2

∣∣∣√1 + x2
∣∣∣ ≤ 1

2
(1 + |x|) + 2(1 + |x|) = 5

2
(1 + |x|).

• Lipschitz condition: We note that the derivative of σ(t, x) is:∣∣∣∣dσ

dx
(t, x)

∣∣∣∣ = |x|√
1 + x2

<
|x|√

x2
= 1.

Hence, σ(t, x) must be Lipschitz, since if we assume that |σ(t, x) − σ(t, y)| > |x − y|, then by the
Cauchy’s mean value theorem, we have:

|σ(t, x)− σ(t, y)|
|x − y| > 1 which implies that there exists some ξ ∈ [x, y] such that

dσ

dx
(t, ξ) > 1,

which is a contradiction, so we have:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ 2|σ(t, x)− σ(t, y)|+ 1
2
|x − y| ≤ 5

2
|x − y|.

• Initial condition: Note that X0 = x ∈ R is a constant, which is independent of the Brownian motion,
and E[|x|2] = x2 < ∞.

Therefore, the equation satisfies the existence and uniqueness theorem. Hence, the equation admits
strong solution. ⌟

(b) Let Yt = log
(√

1 + X2
t + Xt

)
. Find the SDE Yt satisfied.

Solution. Here, we want to use the Itô formula, here we consider the function:

g(x) = log
(√

1 + x2 + x
)

.
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Here, we take the partial derivatives with respect to x for g(x), where we note that:

g′(x) =
x√

1+x2 + 1
√

1 + x2 + x
=

x√
1+x2 + 1

√
1 + x2 + x

·
√

1 + x2 − x√
1 + x2 − x

=
x +

√
1 + x2 − x2

√
1+x2 − x

1 + x2 − x2 =
√

1 + x2 − x2
√

1 + x2
= (1 + x2)−

1
2 ,

g′′(x) = −1
2
(1 + x2)−

3
2 · (2x) = −x(1 − x2)−

3
2 .

Then, we have:

dYt =
∂

∂t
g(Xt)dt +

∂

∂x
g(Xt)dXt +

1
2

∂2

∂x2 g(Xt)(dXt)
2

=
1√

1 + X2
t

dXt −
1
2

Xt

(1 + X2
t )

3
2
(dXt)

2

=
1√

1 + X2
t

[(√
1 + X2

t +
1
2

Xt

)
dt +

√
1 + X2

t dBt

]

− 1
2

Xt

(1 + X2
t )

3
2

[(√
1 + X2

t +
1
2

Xt

)
dt +

√
1 + X2

t dBt

]2

= dt +
Xt

2
√

1 + X2
t

dt + dBt −
1
2

Xt

(1 + X2
t )

3
2

(
1 + X2

t

)
dt

= dt +
1
2

Xt√
1 + X2

t

dt + dBt −
1
2

Xt√
1 + X2

t

dt = dt + dBt.

Hence, Yt satisfies that dYt = dt + dBt . ⌟

(c) Deduce an explicit solution for Xt.

Solution. To find the solution, we have:

Yt = Y0 +
∫ t

0
ds +

∫ t

0
dBs = Y0 + t + Bt.

Also, we note that:
Y0 = log(

√
1 + x2 + x),

so we have:
Yt = log(

√
1 + x2 + x) + t + Bt.

Then, we can write Yt as function of Xt:

log
(√

1 + X2
t + Xt

)
= log(

√
1 + x2 + x) + t + Bt.

By taking the exponential on both sides, we have:√
1 + X2

t + Xt = eteBt + (
√

1 + x2 + x),
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and by some arithmetic deductions, we get to that:

Xt =

(
eteBt + (

√
1 + x2 + x)

)2
− 1

2
(

eteBt + (
√

1 + x2 + x)
) .

⌟

Problem VI.2. Let us consider the one-dimensional SDE:

dXt = b(Xt)dt + σ(Xt)dBt, X0 = x ∈ R.

Assume that b, σ satisfies the Lipschitz condition and linear growth condition. Moreover, assume σ is
continuous differentiable with |σ′(x)| ≤ C < ∞ and σ(x) ≥ δ > 0 for all x ∈ R.

(a) Consider f (x) =
∫ x

0
1

σ(y)dy and the process Yt = f (Xt). Find the SDE Yt satisfies.

Solution. Here, by the Leibniz rule, we have that:

∂ f
∂x

=
1

σ(x)
and

∂2 f
∂x2 = − σ′(x)(

σ(x)
)2 .

Then, we use Itô formula to derive that:

dYt =
∂

∂t
f (Xt)dt +

∂

∂x
f (Xt)dXt +

1
2

∂2

∂x2 f (Xt)(dXt)
2

=
1

σ(Xt)
dXt −

1
2

σ′(x)(
σ(x)

)2 (dXt)
2

=
1

σ(Xt)
[b(Xt)dt + σ(Xt)dBt]−

1
2

σ′(x)(
σ(x)

)2 [b(Xt)dt + σ(Xt)dBt]
2

=
b(Xt)

σ(Xt)
dt + dBt −

1
2

σ′(Xt)(
σ(Xt)

)2

(
σ(Xt)

)2dt =
(

b(Xt)

σ(Xt)
− 1

2
σ′(Xt)

)
dt + dBt.

Hence, the SDE that Yt satisfies is:

dYt =

(
b(Xt)

σ(Xt)
− 1

2
σ′(Xt)

)
dt + dBt .

⌟

(b) Prove that, under the assumption in (a), the filtration Ht = σ({Xs}0≤s≤t) coincides with the natural
filtration Ft = σ({Bs}0≤s≤t).

Proof. Here, we want to show the two inclusions for the filtrations.
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• (Ht ⊂ Ft:) Note that by definition:

dXt = b(Xt)dt + σ(Xt)dBt, X0 = x ∈ R,

where b, σ satisfies the Lipschitz condition and linear growth condition. Also we have X0 = x ∈ R

independent of Bt in which E[|x|2] = x2 < ∞. Hence, the SDE satisfies the existence and uniqueness
theorem, and so Xt is adapted to σ({Bs}0≤s≤t), and hence Ht ⊂ Ft.

• (Ft ⊂ Ht:) Here, recall from part (a), we have:

dBt =

(
b(Xt)

σ(Xt)
− 1

2
σ′(Xt)

)
dt + dYt.

Clearly, 1 satisfies the linear growth and Lipschitz condition, and we need to verify the first part, in
which we denote:

φ(x) =
b(x)
σ(x)

− 1
2

σ′(x).

For the linear growth condition, we have that:

|φ(x)| ≤ |b(x)|
|σ(x)| +

1
2
|σ′(x)| ≤ B(1 + |x|)

δ
+

1
2

C ≤
(

B
δ
+

C
2

)
(1 + |x|).

Note that we do not need Lipschitz condition, since we just need existence of a strong solution so
that Ft is Mt := σ({Ys}t≤s)-adapted.
Also, note that f is monotonic, so it is injective, hence admitting a left-inverse f−1. Note that σ is
measurable, f is also measurable, so does the left-inverse f−1. Hence, Mt = Ht, and so Ft ⊂ Ht.

With both inclusions, we have Ht = Ft, as desired.
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VII Problem Set 7

Problem VII.1. (Exercise 7.1 on [Øksendal]). Find the generator of the following Itô diffusions:

(a) dXt = µXtdt + σdBt (The Ornstein-Uhlenbeck process), where Bt ∈ R, and µ, σ are constants.

Solution. Here, let f ∈ C2
0(R) be arbitrary, and we write the process as:

dXt = µXt︸︷︷︸
b(Xt)

dt + σ︸︷︷︸
σ(Xt)

dBt,

and we have the infinitesimal generator as:

A f (x) = µx
∂ f
∂x

+
1
2

σ2 ∂2 f
∂x2 = µx f ′(x) +

1
2

σ2 f ′′(x) . ⌟

(b) dXt = rXtdt + αXtdBt (The geometric Brownian motion), where Bt ∈ R, and r, α are constants.

Solution. Again, let f ∈ C2
0(R) be arbitrary, and we write the process as:

dXt = rXt︸︷︷︸
b(Xt)

dt + αXt︸︷︷︸
σ(Xt)

dBt,

and we have the infinitesimal generator as:

A f (x) = rx
∂ f
∂x

+
1
2
(αx)2 ∂2 f

∂x2 = rx f ′(x) +
1
2

α2x2 f ′′(x) . ⌟

(c) dYt = rdt + αYtdBt, where Bt ∈ R, and r, α are constants.

Solution. Once again, let f ∈ C2
0(R) be arbitrary, and we write the process as:

dYt = r︸︷︷︸
b(Yt)

dt + αYt︸︷︷︸
σ(Yt)

dBt,

and we have the infinitesimal generator as:

A f (x) = r
∂ f
∂x

+
1
2
(αx)2 ∂2 f

∂x2 = r f ′(x) +
1
2

α2x2 f ′′(x) . ⌟

(d) dYt =

(
dt

dXt

)
, where Xt is as in (a).
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Solution. While again, let f ∈ C2
0(R

2) be arbitrary, and we write the process as:

dYt =

(
dt

µXtdt + σdBt

)
=

(
1

µXt

)
︸ ︷︷ ︸

b(Xt)

dt +

(
0
σ

)
︸ ︷︷ ︸
σ(Xt)

dBt,

and we have the infinitesimal generator as:

A f (x1, x2) =
∂ f
∂x1

+ µx2
∂ f
∂x2

+
1
2

σ2 ∂2 f
∂x2

2
.

⌟

(e)

(
dX1

dX2

)
=

(
1

X2

)
dt +

(
0

eX1

)
dBt, where Bt ∈ R.

Solution. Even again, let f ∈ C2
0(R

2) be arbitrary, and we write the process as:(
dX1

dX2

)
=

(
1

X2

)
︸ ︷︷ ︸
b(X1,X2)

dt +

(
0

eX1

)
︸ ︷︷ ︸
σ(X1,X2)

dBt,

and we have the infinitesimal generator as:

A f (x1, x2) =
∂ f
∂x1

+ x2
∂ f
∂x2

+
1
2

e2x1
∂2 f
∂x2

2
.

⌟

Problem VII.2. (Exercise 7.2 on [Øksendal]). Find an Itô diffusion (i.e., write down the stochastic
differential equation for it) whose generator is the following:

(a) A f (x) = f ′(x) + f ′′(x); f ∈ C2
0(R).

Solution. Here, we reversely construct that:

dXt = dt +
√

2dBt . ⌟

(b) A f (t, x) = ∂ f
∂t + cx ∂ f

∂x + 1
2 α2x2 ∂2 f

∂x2 ; f ∈ C2
0(R

2), where c, α are constants.

Solution. Again, we reversely construct that:

dXt =

(
1

cX(2)
t

)
dt +

(
0

αX(2)
t

)
dBt .

⌟
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(c) A f (x1, x2) = 2x2
∂ f
∂x1

+ log(1 + x2
1 + x2

2)
∂ f
∂x2

+ 1
2 (1 + x2

1)
∂ f
∂x2

1
+ x1

∂2 f
∂x1∂x2

+ 1
2 · ∂2 f

∂x2
2
, f ∈ C2

0(R
2).

Solution. Once again, we reversely construct the σσ⊺ matrix as:

σσ⊺ =

(
1 + x2

1 x1

x1 1

)
.

Note that
√

1 + x2
1 ·

√
1 is not the same as the diagonals, so σ must be a 2-by-2 matrix.

Suppose σ =

(
α β

γ δ

)
, then we have:

σσ⊺ =

(
a2 + b2 ac + bd
ac + bd c2 + d2,

)

and we have a candidate of σ as:

σ =

(
1 x1

0 1

)
Hence, we have:

dXt =

 2X(2)
t

log
(

1 + X(1)
t

2
+ X(2)

t
2
) dt +

(
1 X1

0 1

)
dBt .

⌟
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VIII Problem Set 8

Problem VIII.1. (Exercise 7.7 on [Øksendal]). Let Bt be Brownian motion on Rn starting at x ∈ Rn and
let D ⊂ Rn be an open ball centered at x.

(a) Prove that the harmonic measure µx
D of Bt is rotation invariant (about x) on the sphere ∂D. Conclude

that µx
D coincides with normalized surface measure σ on ∂D.

Proof. Without loss of generality, we suppose x = 0, since the harmonic measure and Brownian motion is
translational invariant.
First, we want to show that the Brownian motion is invariant with rotations. Suppose U ∈ Rn×n such
that UU⊺ = Id. Hence, we have det U = 1, and so when we have the change of variable p 7→ U · p, the
probability measure is the same, so the rotation of a Brownian motion is still a Brownian motion.
Now, as we consider the definition of the harmonic measure of some F ∈ ∂D, we have that:

µ0
D(F) := Q0[BτD ∈ F],

and consider a rotation centered at 0 as U, we then have:

µ0
D(U · F) := Q0[BτD ∈ U · F] = Q0[U · BτD ∈ F] = Q0[BτD ∈ F] = µ0

D(F),

as desired. Moreover, consider that the harmonic measure µx
D of Bt is rotational invariant about ∂D, for

any point d, d′ ∈ ∂D, we have that µx
D(d) = µx

D(d
′) so the measure is uniformly distributed on the surface,

and µD(∂D) = 1. Hence, it coincides with the normalized surface measure ω on ∂D.

(b) Let ϕ be a bounded measurable function on a bounded open set W ⊂ Rn and define:

u(x) = Ex[ϕ(BτW )] for x ∈ W.

Prove that u satisfies the classical mean value property:

u(x) =
∫

∂D
u(y)dσ(y) (7)

for all balls D centered at x with D ⊂ W.

Proof. Here, we have ϕ ∈ L1(W), so we have that:

u(x) =
∫

∂D
u(y)dµx

D(y) =
∫

∂D
u(y)dσ(y),

since µx
D coincides with normalized surface measure σ.
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(c) Let W be as in (b) and let w : W → R be harmonic in W, i.e.:

∆w :=
n

∑
i=1

∂2w
∂x2

i
= 0 in W.

Prove that w satisfies the classical mean value property (7).

Proof. Here, recall Green’s formula for Harmonic PDE, we set the problem as:{
∆w = 0, in W,

w(x) = g(x), on ∂W,

where we assume that g(x) is bounded and measurable function on W.
Then, we have the model that E

[
g
(

Bx
t (ω)

)]
= u(x), and naturally by (b), we have:

w(x) =
∫

∂D
w(y)dσ(y).

Problem VIII.2. (Exercise 7.10 on [Øksendal]). Let Xt be the geometric Brownian motion:

dXt = rXtdt + αXtdBt.

Find Ex[XT | Ft] for t ≤ T by different approaches.

(a) Using the Markov property.

Solution. Here, we use the Markov property so that:

Ex[Xt+(T−t) | Ft] = EXt [XT−t] = E[Xt] · E

[
exp

((
r − α2

2

)
t + αBt

)]
= Xt exp

(
r(T − t)

)
= x exp(rt) exp

(
r(T − t)

)
= x exp(rT) .

⌟

(b) Writing Xt = xert Mt, where:

Mt = exp
(

αBt −
1
2

α2t
)

is a martingale.

Solution. Here, we can write the expectation as:

Ex[XT | Ft] = Ex[xerT MT | Ft] = xerTEx[MT | Ft]

= x exp(rT) · Mt = exp
(
r(T − t)

)
Xt = x exp(rT) .

⌟
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Problem VIII.3. (Exercise 8.1 on [Øksendal]). Let ∆ denote the Laplace operator on Rn.

(a) Write down, in terms of Brownian motion, a bounded solution g of the Cauchy problem:
∂g(t, x)

∂t
− 1

2
∆xg(t, x) = 0, for t > 0, x ∈ Rn,

g(0, x) = ϕ(x),

where ϕ ∈ C2
0 is given. (From general theory it is known that the solution is unique.)

Solution. Here, since ϕ ∈ C2
0 , we know that ϕ is lower-bounded. Then, we consider the Itô diffusion:

dXt = 0dt + Id dBt = dBt.

Then, we have the generator of the Itô diffusion as:

A f =
1
2

n

∑
i=1

∂ f
∂x2

i
= ∆x f for f ∈ C2(Rn).

Hence, we can use Feynman-Kac Formula that:

g(t, x) = Ex
[

exp
(
−
∫ t

0
0ds
)

ϕ(Xt)

]
= Ex[ϕ(Bt)] . ⌟

(b) Let ψ ∈ Cb(R
n) and α > 0. Find a bounded solution u of the equation:(

α − 1
2

∆
)

u = ψ in Rn.

Prove that the solution is unique.

Proof. Here, we note that we want to create the same Itô diffusion:

dXt = 0dt + Id dBt = dBt.

Then, we have the generator of the Itô diffusion as:

A f =
1
2

n

∑
i=1

∂ f
∂x2

i
= ∆x f for f ∈ C2(Rn).

Then, we can use Feynman-Kac Formula that:

u(t, x) = Ex
[

exp
(
−
∫ t

0
ψ(Xs)ds

)]
= Ex

[
exp

(
−
∫ t

0
ψ(Bt)ds

)]
,

and the solution is unique for a given initial condition by Feynman-Kac.
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Problem VIII.4. (Exercise 8.7 on [Øksendal]). Let Xt be a sum of Itô integrals of the form:

Xt =
n

∑
k=1

∫ t

0
vk(s, ω)dBk(s),

where (B1, · · · , Bn) is n-dimensional Brownian motion. Assume that:

βt :=
∫ t

0

n

∑
k=1

v2
k(s, ω)ds → ∞ as t → ∞ a.s.

Prove that:
lim sup

t→∞

Xt√
2βt log log βt

= 1 a.s.

Hint: Use the law of iterated logarithm.

Proof. Here, we consider the differential form:

dXt =
n

∑
k=1

vk(s, ω)dBk(t).

Then, we note that this is a 1-dimensional Brownian motion, and the time change is:

βt =
∫ t

0

n

∑
k=1

v2
k(s, ω)ds.

With this time change, we can consider:

lim sup
t→∞

Xt√
2βt log log βt

= lim sup
t→∞

Bt√
2t log log t

= 1

almost surely by the law of iterated logarithm.

Problem VIII.5. Find a solution to the following PDE:

(a) 
∂

∂t
u(t, x) + bx

∂

∂x
u(t, x) +

σ2

2
∂2

∂x2 u(t, x) = 0, x ∈ R, t ∈ (0, T);

u(T, x) = x, x ∈ R.

Solution. Here, we need to think about the process for the SDE, as follows:

dXt = bXtdt + σdBt,

so we have the Itô generator as:

A f = bx
∂ f
∂x

+
1
2

σ2 ∂2 f
∂x2 .
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However, note that x is not lower bounded, so we cannot use the Feynman-Kac backward equation,
directly, but we can think of a mollifier for ϵ < 0 that:

∂

∂t
u(ϵ)(t, x) + bx

∂

∂x
u(ϵ)(t, x) +

σ2

2
∂2

∂x2 u(ϵ)(t, x) = 0, x ∈ R, t ∈ (0, T);

u(ϵ)(T, x) = max{ϵ, x}, x ∈ R.

Here, we consider the solution as:

Ex [max {ϵ, XT}] → Ex[XT ] ,

where Xt is the solution to the OU process. ⌟

(b) What if the boundary condition was replaced by u(T, x) = x2.

Solution. Then, we use the backward Feynman-Kac Formula, since x2 is bounded below, so that:

u(t, x) = Ex
[

X2
T

]
,

where Xt is the solution to the OU process. ⌟

Problem VIII.6. (Exercise 8.11 on [Øksendal]).

(a) Let Y(t) = t+ B(t) for t ≥ 0. For each T > 0, find a probability measure QT on FT such that QT ∼ P

and {Y(t)}t≤T is Brownian motion with respect to QT . Use:

MTdP = MtdP on F (n)
t ; t ≤ T when M is a martingale

to prove that there exists a probability measure Q on F∞ such that:

Q |FT= QT for all T > 0.

Solution. Here, we write the expression as:

dY(t) = 1︸︷︷︸
a(t,ω)

dt + dB(t),

and hence we have the martingale:

Mt = exp
(
−
∫ t

0
dBs −

1
2

∫ t

0
ds
)
= exp

(
−B(t)− 1

2
t
)

,
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and hence by Girsanov theorem I, we have:

dQ(ω) = exp
(
−B(T)− 1

2
T
)

dP(ω),

while Y(t) is a Brownian motion with respect to QT for 0 ≤ t ≤ T.
Note that Mt is martingale, hence we can consider:

Qt |Fs= Qs for t ≥ s.

Hence, we can construct the measure from Qt for a t ≥ 0 in to Q, as desired. ⌟

(b) Show that:

P

(
lim
t→∞

Y(t) = ∞
)
= 1,

while:
Q

(
lim
t→∞

Y(t) = ∞
)
= 0.

Why does not this contradict the Girsanov theorem?

Solution. Recall the Law of Iterated Log, we have:

lim sup
t→∞

Bt√
2t log log t

= 1,

lim inf
t→∞

Bt√
2t log log t

= 0.

Now, consider the probability measure of P, we have:

lim
t→∞

Bt + t√
2t log log t

≤ lim
t→∞

t√
2t log log t

→ ∞.

However, for the probability measure Q, we have that:

lim
t→∞

Bt√
2t log log t

not to ∞ a.s.

Hence, we note that P and Q does not correspond, this is because Q is constructed from T → ∞, but is
does not align to the case for concrete T values. ⌟

Problem VIII.7. (Exercise 8.12 on [Øksendal]). Let:

dY(t) =

(
0
1

)
dt +

(
1 3
−1 −2

)(
dB1(t)
dB2(t)

)
, t ≤ T.

Find a probability measure
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Q on F (2)
T such that Q ∼ P and such that:

B̃(t) :=

(
−3t

t

)
+

(
B1(t)
B2(t)

)

is Brownian motion with respect to Q and:

dY(t) =

(
1 3
−1 −2

)(
dB̃1(t)
dB̃2(t)

)
.

Solution. Here, we think about:

B̃(t) =

(
a(t) + B1(t)
b(t) + B2(t)

)
,

so that we have: (
1 3
−1 −2

)(
a(t)
b(t)

)
=

(
0
1

)
,

and hence b = 1 and a = −3.
Then, we will think about Girsanov theorem I, so we have:

Mt = exp

(
−
∫ t

0

(
−3
1

)(
dB1(t) dB2(t)

)
− 1

2

∫ t

0

(
−3
1

)(
−3 1

)
ds

)
= exp

(
3B1(t)− B2(t)− 5t

)
,

which leads to the change in probability measure as:

dQ(ω) = exp
(
3B1(T)(ω)− B2(T)(ω)− 5T

)
dP(ω) . ⌟

Problem VIII.8. Let (Ω,F , P) be a complete probability space and B = {Bt}t≥0 be a Brownian motion
with respect to filtration {Ft}t≥0.

(a) Let b : R → R be a bounded continuously differentiable function and x a fixed real number. De-
termine a new probability Q in (Ω,F ), the process Wt = Bt −

∫ t
0 b(Bs + x)ds is a Brownian motion

when 0 ≤ t ≤ T. Find the SDE Yt = x + Bt satisfied with respect to Q, i.e., with respect to Wt.

Solution. Here, we write the expression in terms of differential form:

dWt = dBt − b(Bt + x)dt.

Then, we use the Girsanov theorem I to obtain that:

Mt = exp
(
−
∫ t

0
−b(Bs + x)dBs −

1
2

∫ t

0
b2(Bs + x)ds

)
.
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Hence, with the change in measure, we have:

dQ(ω) = exp
(∫ T

0
b(Bs + x)dBs −

1
2

∫ T

0
b2(Bs + x)ds

)
dP(ω).

Then, for Yt = x + Bt, we have:

dYt = dBt = dWt + b(Bt + x)dt = b(Yt)dt + dWt . ⌟

(b) Let F be an antiderivative of b. Prove that dQ = ZTdP with:

Zt = exp
(

F(Bt + x)− F(x)− 1
2

∫ t

0
[b′(Bs + x) + b2(Bs + x)]ds

)
.

Proof. Note that from (a), we have:

ZT = exp
(∫ T

0
b(Bs + x)dBs −

1
2

∫ T

0
b2(Bs + x)ds

)
= exp

(
F(BT + x)− F(x)−

∫ T

0

1
2

b′(Bs + x)ds − 1
2

∫ T

0
b2(Bs + x)ds

)
= exp

(
F(Bt + x)− F(x)− 1

2

∫ t

0
[b′(Bs + x) + b2(Bs + x)]ds

)
,

as desired.

(c) Let Y be the solution of: dYt = tanh(Yt)dt + dWt,

Y0 = x.

Find E[eθYt ] the Laplace transform of Yt with respect to P.

Solution. Here, we immediately notice that this is a great model to define another Brownian motion,
namely:

M̃T = exp
(
−
∫ T

0
tanh(Ys)dWs −

1
2

∫ T

0
tanh2(Ys)ds

)
.

Hence, we have Yt as a Brownian motion with measure:

dT = exp
(
−
∫ T

0
tanh(Ys)dWs −

1
2

∫ T

0
tanh2(Ys)ds

)
dQ

= exp
(
−
∫ T

0
tanh(Ys)dWs −

1
2

∫ T

0
tanh2(Ys)ds +

∫ T

0
b(Bs + x)dBs −

1
2

∫ T

0
b2(Bs + x)ds

)
dP.

Then, we have the Laplace transformation as:

ET[exp(θYt)] = exp
(

1
2

θ2t
)

,
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and hence, by the change of variable, we have:

EP[exp(θYt)]

= exp
(

1
2

θ2t −
∫ T

0
tanh(Ys)dWs −

1
2

∫ T

0
tanh2(Ys)ds +

∫ T

0
b(Bs + x)dBs −

1
2

∫ T

0
b2(Bs + x)ds

)

=
exp

(
1
2 θ2t −

∫ T
0 tanh(Ys)dBs − 1

2 θ2t −
∫ T

0 tanh(Ys)b(Bt + x)dt

− 1
2

∫ T
0 tanh2(Ys)ds +

∫ T
0 b(Bs + x)dBs − 1

2

∫ T
0 b2(Bs + x)ds

) .

⌟
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