

Practice Problem Sets

James Guo

Spring 2025

Contents

I	Problem Set 1	1
II	Problem Set 2	6
III	Problem Set 3	12
IV	Problem Set 4	18
V	Problem Set 5	22
VI	Problem Set 6	33
VII	Problem Set 7	37
VIII	Problem Set 8	40

- The practice problem sets are practices for AS.110.653 Stochastic Differential Equations instructed by *Dr. Xiong Wang* at *Johns Hopkins University* in the Spring 2025 semester.
 - Dr. Wang has really dedicated a lot into designing and executing the class. We greatly appreciate his instructions throughout the course and his assistance in tackling on these problems.
- Exercises numbers refer to the course textbook [Øksendal]:
 - *Stochastic Differential Equations: An Introduction with Applications* by Bernt Øksendal.
- The solutions might contain minor typos or errors. Please point out any notable error(s) through [this link](#).

I Problem Set 1

Problem I.1. (Exercise 2.1 on [Øksendal]). Suppose that $X : \Omega \rightarrow \mathbb{R}$ is a function which assumes only countably many values $a_1, a_2, \dots \in \mathbb{R}$.

(a) Show that X is a random variable if and only if:

$$X^{-1}(a_k) \in \mathcal{F} \text{ for all } k = 1, 2, \dots. \quad (1)$$

Proof. Here, note that X assumes only countably many values $a_1, a_2, \dots \in \mathbb{R}$, and denote the set of these points as $X(\Omega)$, for any open set $U \subset \mathbb{R}$, its preimage $X^{-1}(U)$ must be a subset of $X(\Omega)$, i.e., $X^{-1}(U) \subset X^{-1}(X(\Omega))$. Now, let $I \subset \mathbb{N}^+$ be a indexed set in which $a_i \in U$, then the preimage of U is simply the countable union $X^{-1}(U) = \bigcup_{i \in I} X^{-1}(a_i)$.

Recall that for a σ -algebra, if a sequence of set is in it, its countable union must be still in it. Note that $X(\Omega)$ is countable, it is discrete (or not containing an interval in \mathbb{R} , which making it uncountable), so for any a_j where $j \in \mathbb{N}^+$, there exists some $\epsilon > 0$ such that $a_k \notin N_\epsilon(a_j)$ for all $k \neq j$. By such, we know that X being a random variable is equivalent to saying that $X^{-1}(U) \in \mathcal{F}$ for all open set $U \subset \mathbb{R}$, which is equivalent to saying that $X^{-1}(\bigcup_{i \in I} a_i) \in \mathcal{F}$ for all possible $I \in \mathcal{P}(\mathbb{N}^+)$, which is equivalently to $X^{-1}(a_k) \in \mathcal{F}$ for all $k \in \mathbb{Z}^+$, as desired. \square

(b) Suppose (1) holds, show that:

$$\mathbb{E}[|X|] = \sum_{k=1}^{\infty} |a_k| \mathbb{P}[X = a_k]$$

Proof. Now, as we shall evaluate the expectation, while $X(\Omega)$ is countable, we have:

$$\begin{aligned} \mathbb{E}[|X|] &= \int_{\Omega} |X(\omega)| d\mathbb{P}(\omega) = \int_{X(\Omega)} |a| d\mathbb{P}(X^{-1}(a)) \\ &= \sum_{a \in X(\Omega)} |a| \mathbb{P}(X^{-1}(a)) = \sum_{k=1}^{\infty} |a_k| \mathbb{P}[X = a_k], \end{aligned}$$

as desired. \square

(c) If (1) holds and $\mathbb{E}[|X|] < \infty$, show that:

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} a_k \mathbb{P}[X = a_k].$$

Proof. By (1) and $\mathbb{E}[|X|] < \infty$, we know that $|X(\omega)|$ is integrable, then, we may evaluate the integral without the absolute value sign (which is not necessarily positive):

$$\begin{aligned} \mathbb{E}[X] &= \int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \int_{X(\Omega)} a d\mathbb{P}(X^{-1}(a)) \\ &= \sum_{a \in X(\Omega)} a \mathbb{P}(X^{-1}(a)) = \sum_{k=1}^{\infty} a_k \mathbb{P}[X = a_k]. \end{aligned}$$

Note that based on the definition of Lebesgue integration, a function is integrated on the positive and negative parts, respectively, so we must enforce convergence in absolute value (absolute convergence) for the integral to be well defined. \square

(d) If (1) holds and $f : \mathbb{R} \rightarrow \mathbb{R}$ is measurable and bounded, show that:

$$\mathbb{E}[f(X)] = \sum_{k=1}^{\infty} f(a_k) \mathbb{P}[X = a_k].$$

Proof. First, we need to show that $\mathbb{E}[|f(X)|]$ is finite. Since f is bounded, there exists some $C \in \mathbb{R}^+$ such that $|f(x)| < C$ for all $x \in \mathbb{R}$. Moreover, since f is measurable, and $X(\Omega)$ is discrete, then $f(X(\Omega))$ is discrete (thus measurable) and for any $x \in f(X(\Omega))$, $f^{-1}(x)$ is measurable, hence, we have the expectation as:

$$\begin{aligned} \mathbb{E}[|f(X)|] &= \int_{\Omega} |f(X(\omega))| d\mathbb{P}(\omega) = \int_{X(\Omega)} |f(a)| d\mathbb{P}(X^{-1}(a)) \\ &= \sum_{a \in X(\Omega)} |f(a)| \mathbb{P}(X^{-1}(a)) = \sum_{k=1}^{\infty} |a_k| \mathbb{P}[X = a_k] \\ &< C \sum_{k=1}^{\infty} \mathbb{P}[X = a_k] = C < \infty. \end{aligned}$$

Hence, it is integrable, so we may find the expectation without absolute value sign, that is:

$$\begin{aligned} \mathbb{E}[f(X)] &= \int_{\Omega} f(X(\omega)) d\mathbb{P}(\omega) = \int_{X(\Omega)} f(a) d\mathbb{P}(X^{-1}(a)) \\ &= \sum_{a \in X(\Omega)} f(a) \mathbb{P}(X^{-1}(a)) = \sum_{k=1}^{\infty} f(a_k) \mathbb{P}[X = a_k], \end{aligned}$$

which finishes the proof. \square

Problem I.2. (Exercise 2.3 on [Øksendal]). Let $\{\mathcal{H}_i\}_{i \in I}$ be a family of σ -algebras on Ω . Prove that:

$$\mathcal{H} = \bigcap \{\mathcal{H}_i : i \in I\}$$

is again a σ -algebra.

Proof. First, we note that each σ -algebra contains \emptyset , hence their intersection shall still contain \emptyset .

Now, for any $F \in \mathcal{H}$, we know that $F \in \mathcal{H}_i$ for all $i \in I$, then $F^c \in \mathcal{H}_i$ for all $i \in I$, thus $F^c \in \mathcal{H}$.

Eventually, let $\{F_a\}_{a \in \mathbb{N}^+} \subset \mathcal{H}$ be an arbitrary sequence, then $\{F_a\}_{a \in \mathbb{N}^+} \subset \mathcal{H}_i$ for all $i \in I$, then $\bigcup_{a \in \mathbb{N}^+} F_a \in \mathcal{H}_i$ for all $i \in I$, hence the countable union is in \mathcal{H} .

Thus, \mathcal{H} is a σ -algebra. \square

Problem I.3. (Exercise 2.4 in [Øksendal]).

(a) Let $X : \Omega \rightarrow \mathbb{R}^n$ be a random variable such that:

$$\mathbb{E}[|X|^p] < \infty \text{ for some } p, 0 < p < \infty.$$

Prove *Chebychev's inequality*:

$$\mathbb{P}[|X| \geq \lambda] \leq \frac{1}{\lambda^p} \mathbb{E}[|X|^p] \text{ for all } \lambda > 0.$$

Hint: $\int_{\Omega} |X|^p d\mathbb{P} \geq \int_A |X|^p d\mathbb{P}$, where $A = \{\omega : |X| \geq \lambda\}$.

Proof. Here, we first note that $A \subset \Omega$, so we trivially have:

$$\int_{\Omega} |X|^p d\mathbb{P} \geq \int_A |X|^p d\mathbb{P},$$

by the monotonicity measure of subsets.

Then, we may build an inequality as:

$$\begin{aligned} \int_{\Omega} |X|^p d\mathbb{P} &\geq \int_A |X|^p d\mathbb{P} = \int_A |X(\omega)|^p d\mathbb{P}(\omega) \\ &\geq \int_A \lambda^p d\mathbb{P}(\omega) = \lambda^p \int_A d\mathbb{P}(\omega) = \lambda^p \mathbb{P}(A) = \lambda^p \mathbb{P}[|X| \geq \lambda]. \end{aligned}$$

Then, by dividing both sides with λ^p , we now have:

$$\mathbb{P}[|X| \geq \lambda] \leq \frac{1}{\lambda^p} \int_{\Omega} |X|^p d\mathbb{P} = \frac{1}{\lambda^p} \mathbb{E}[|X|^p],$$

which completes the proof. \square

(b) Suppose there exists $k > 0$ such that:

$$M = \mathbb{E}[\exp(k|X|)] < \infty.$$

Prove that $\mathbb{P}[|X| \geq \lambda] \leq M e^{-k\lambda}$ for all $\lambda \geq 0$.

Proof. Here, can first note that since $\exp(-)$ is monotonic, so:

$$\mathbb{P}[|X| \geq \lambda] = \mathbb{P}[|\exp(k|X|)| \geq e^{k\lambda}].$$

Since we assume that $M = \mathbb{E}[\exp(k|X|)] < \infty$, we can apply part (a) with $p = 1$ as:

$$\mathbb{P}[|\exp(k|X|)| \geq e^{k\lambda}] \leq \frac{1}{e^{k\lambda}} \mathbb{E}[|\exp(k|X|)|] = \frac{1}{e^{k\lambda}} \mathbb{E}[\exp(k|X|)] = M e^{-k\lambda},$$

and it combines with the previous equality as:

$$\mathbb{P}[|X| \geq \lambda] \leq M e^{-k\lambda},$$

as desired. \square

Problem I.4. (Exercise 2.6 in [Øksendal]). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let A_1, A_2, \dots be sets in \mathcal{F} such that:

$$\sum_{k=1}^{\infty} \mathbb{P}(A_k) < \infty.$$

Prove the *Borel-Cantelli* lemma:

$$\mathbb{P}\left(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k\right) = 0,$$

i.e., the probability that ω belongs to infinitely many A_k 's is zero.

Proof. First, we note that $\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k$ is a countable intersection of countable union of measurable set, hence $\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k \in \mathcal{F}$, i.e. it is measurable.

Then, note that the infinite sum $\sum_{k=1}^{\infty} \mathbb{P}(A_k) < \infty$, then for any $\epsilon > 0$, there exists some $m > 0$ such that:

$$\sum_{k=m}^{\infty} \mathbb{P}(A_k) < \epsilon.$$

Thus, we can note that by the fact that an intersection is a subset and by the countable additivity of measure, we have:

$$\mathbb{P}\left(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k\right) \leq \mathbb{P}\left(\bigcup_{k=m}^{\infty} A_k\right) < \epsilon.$$

Now, since $\mathbb{P}(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k) < \epsilon$ for all $\epsilon > 0$, we have:

$$\mathbb{P}\left(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k\right) = 0,$$

which completes the proof of the *Borel-Cantelli* lemma. □

Problem I.5. Prove Lebesgue's dominance convergence theorem under assumption "convergence in probability." You can apply the version under assumption "convergence almost surely."

Here, we first recall Lebesgue's dominance convergence theorem:

Theorem. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions such that $f_n(x) \rightarrow f(x)$ for a.e. x , as $n \rightarrow \infty$. If $|f_n(x)| \leq g(x)$, where g is integrable, then:

$$\int |f_n - f| \rightarrow 0 \text{ as } n \rightarrow \infty,$$

and consequently:

$$\int f_n \rightarrow \int f \text{ as } n \rightarrow \infty.$$

To consider this under the "convergence in probability," the theorem becomes:

Theorem. Suppose $\{X_n\}_{n=1}^\infty$ is a sequence of random variables $X_i : \Omega \rightarrow \mathbb{R}$ such that $X_n \xrightarrow{\mathbb{P}} X$, where $X : \Omega \rightarrow \mathbb{R}$ is a random variable, as $n \rightarrow \infty$. If $|X_n| \leq Y$, for random variable $Y : \Omega \rightarrow \mathbb{R}$, where $\mathbb{E}[|Y|] < \infty$, then:

$$\mathbb{E}[|X_n - X|] \rightarrow 0 \text{ as } n \rightarrow \infty,$$

and consequently:

$$\mathbb{E}[X_n] \rightarrow \mathbb{E}[X] \text{ as } n \rightarrow \infty.$$

Proof. Let $\epsilon > 0$ be arbitrary, we define:

$$\Omega_\epsilon := \{\omega \in \Omega : |X_n(\omega) - X(\omega)| \leq \epsilon\},$$

and correspondingly:

$$\Omega_\epsilon^c := \{\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon\}.$$

By the definition of convergence in probability, there exists some $n \in \mathbb{N}^+$ such that $\mathbb{P}[|X_n - X| > \epsilon] < \epsilon$, so we have $\mathbb{P}(\Omega_\epsilon^c) < \epsilon$ with arbitrarily large n .

Also, since $\mathbb{E}[|Y|] < \infty$, we note that $|Y|$ must be bounded a.e., that is $|Y| < k$ for some $k \in \mathbb{R}^+$ a.e.

Then, we want to decompose our expectation as:

$$\begin{aligned} \mathbb{E}[|X_n - X|] &= \int_{\Omega} |X_n(\omega) - X(\omega)| d\mathbb{P}(\omega) \\ &= \int_{\Omega_\epsilon} |X_n(\omega) - X(\omega)| d\mathbb{P}(\omega) + \int_{\Omega_\epsilon^c} |X_n(\omega) - X(\omega)| d\mathbb{P}(\omega) \\ &\leq \mathbb{P}(\Omega_\epsilon)\epsilon + \int_{\Omega_\epsilon^c} 2|Y(\omega)| d\mathbb{P}(\omega) \\ &\leq 1 \cdot \epsilon + 2k\epsilon \leq (2k+1)\epsilon. \end{aligned}$$

Thus, as $n \rightarrow \infty$, $\mathbb{E}[|X_n - X|] < (2k+1)\epsilon$ for all $\epsilon > 0$, so $\mathbb{E}[|X_n - X|] \rightarrow 0$.

Afterwards, we shall note that:

$$|\mathbb{E}[X_n] - \mathbb{E}[X]| = |\mathbb{E}[X_n - X]| \leq \mathbb{E}[|X_n - X|] \rightarrow 0 \text{ as } n \rightarrow \infty,$$

so we have $\mathbb{E}[X_n] \rightarrow \mathbb{E}[X]$ as $n \rightarrow \infty$. □

II Problem Set 2

Problem II.1. (Exercise 2.17 on [Øksendal]). If $X_t(\cdot) : \Omega \rightarrow \mathbb{R}$ is a continuous stochastic process, then for $p > 0$ the p -th variation process of X_t , $\langle X, X \rangle_t^{(p)}$ is defined by:

$$\langle X, X \rangle_t^{(p)}(\omega) = \lim_{\Delta t_k \rightarrow 0} \sum_{t_k \leq t} |X_{t_{k+1}}(\omega) - X_{t_k}(\omega)|^p$$

as the limit in probability where $0 = t_1 < t_2 < \dots < t_n = t$ and $\Delta t_k = t_{k+1} - t_k$. In particular, if $p = 1$, this process is called the *total variation process* and if $p = 2$, it is called the *quadratic variation process*. For Brownian motion $B_t \in \mathbb{R}$, we now show that the quadratic variation process is simply:

$$\langle B, B \rangle_t(\omega) = \langle B, B \rangle_t^{(2)}(\omega) = t \text{ a.s.}$$

(a) Define:

$$\Delta B_k = B_{t_{k+1}} - B_{t_k},$$

and put:

$$Y(t, \omega) = \sum_{t_k \leq t} (\Delta B_k(\omega))^2.$$

Show that:

$$\mathbb{E} \left[\left(\sum_{t_k \leq t} (\Delta B_k)^2 - t \right)^2 \right] = 2 \sum_{t_k \leq t} (\Delta t_k)^2,$$

and deduce that $Y(t, \cdot) \rightarrow t$ in $L^2(P)$ as $\Delta t_k \rightarrow 0$.

Proof. Here, we first recall the property of Brownian motion so that:

$$\Delta B_k \sim \mathcal{N}(0, t_{k+1} - t_k) = \mathcal{N}(0, \Delta t_k).$$

Here, we note that the Brownian motions are independent, so we have:

$$\begin{aligned} \mathbb{E} \left[\left(\sum_{t_k \leq t} (\Delta B_k)^2 - t \right)^2 \right] &= \mathbb{E} \left[\sum_{t_k \leq t} ((\Delta B_k)^2 - t)^2 \right] = \sum_{t_k \leq t} \mathbb{E} [((\Delta B_k)^2 - t)^2] \\ &= \sum_{t_k \leq t} \mathbb{E} [(\Delta B_k)^4 - 2t(\Delta B_k)^2 + t^2]. \end{aligned}$$

Recall the fourth moment being $3\sigma^4 = 3(\Delta t_k)^2$, the second moment as $\sigma^2 = \Delta t_k$, so we have the expectation as:

$$\mathbb{E} \left[\left(\sum_{t_k \leq t} (\Delta B_k)^2 - t \right)^2 \right] = 3(\Delta t_k)^2 - 2(\Delta t_k)^2 + (\Delta t_k)^2 = 2(\Delta t_k)^2.$$

Hence, as we consider the expectation as integral, we have:

$$\int_{\Omega} \left(\sum_{t_k \leq t} (\Delta B_k(\omega))^2 - t \right)^2 d\mathbb{P}(\omega) \rightarrow 0 \text{ as } \Delta t_k \rightarrow 0,$$

so we have L^2 convergence that $Y(t, \cdot) := \sum_{t_k \leq t} (\Delta B_k(\omega))^2 \rightarrow t$, as required. \square

(b) Use (a) to prove that a.a. paths of Brownian motion do not have a bounded variation on $[0, t]$, i.e. the total variation of Brownian motion is infinite, a.s.

Proof. First, we may obtain the inequality that:

$$\sum_{t_k \leq t} |\Delta B_k(\omega)| = \sum_{t_k \leq t} \frac{|\Delta B_k(\omega)|^2}{|\Delta B_k(\omega)|} \geq \frac{1}{\sup_{t_k \leq t} |\Delta B_k(\omega)|} \sum_{t_k \leq t} |\Delta B_k(\omega)|^2.$$

Again, note that we want $\Delta t_k \rightarrow 0$, then we have $|\Delta B_k(\omega)| \rightarrow 0$ for all $t_k \leq t$, thus:

$$\begin{aligned} \langle B, B \rangle_t^{(1)}(\omega) &= \lim_{\Delta t_k \rightarrow 0} \sum_{t_k \leq t} |\Delta B_k(\omega)| \geq \lim_{\Delta t_k \rightarrow 0} \frac{1}{\sup_{t_k \leq t} |\Delta B_k(\omega)|} \sum_{t_k \leq t} |\Delta B_k(\omega)|^2 \\ &= \langle B, B \rangle_t^{(2)}(\omega) \lim_{\Delta t_k \rightarrow 0} \frac{1}{\sup_{t_k \leq t} |\Delta B_k(\omega)|} = t \lim_{\Delta t_k \rightarrow 0} \frac{1}{\sup_{t_k \leq t} |\Delta B_k(\omega)|} = +\infty. \end{aligned}$$

Hence, we have the total variation of the Brownian motion being infinite almost surely. \square

Problem II.2. (Exercise 2.18 on [Øksendal]).

(a) Let $\Omega = \{1, 2, 3, 4, 5\}$ and let \mathcal{U} be the collection:

$$\mathcal{U} = \{\{1, 2, 3\}, \{3, 4, 5\}\}$$

of subsets of Ω . Find the smallest σ -algebra containing \mathcal{U} , i.e., the σ -algebra $\mathcal{H}_{\mathcal{U}}$ generated by \mathcal{U} .

Solution. From the beginning, the σ -algebra must contain the empty set and its compliment, $\{\emptyset, \Omega\}$. Then, consider the sets in the collection and their (countable union), we have:

$$\{\emptyset, \{1, 2, 3\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5\} = \Omega\}.$$

Then, consider the complimentary sets, we must have:

$$\{\emptyset, \{1, 2, 3\}, \{3, 4, 5\}, \Omega, \{4, 5\}, \{1, 2\}\},$$

while this would have created another union and a compliment, so we have:

$$\{\emptyset, \{3\}, \{1, 2\}, \{4, 5\}, \{1, 2, 3\}, \{3, 4, 5\}, \{1, 2, 4, 5\}, \Omega\}.$$

Now, one can verify that the above collection contains \mathcal{U} , has the empty set, compliments, and countable unions, so the σ -algebra is:

$$\mathcal{H}_{\mathcal{U}} = \boxed{\{\emptyset, \{3\}, \{1, 2\}, \{4, 5\}, \{1, 2, 3\}, \{3, 4, 5\}, \{1, 2, 4, 5\}, \Omega\}}.$$

\square

(b) Define $X : \Omega \rightarrow \mathbb{R}$ by:

$$X(1) = X(2) = 0, \quad X(3) = 10, \quad X(4) = X(5) = 1.$$

Is X measurable with respect $\mathcal{H}_{\mathcal{U}}$?

Solution. Yes. By [Problem I.1\(a\)](#), since we have a (at most) countable image, we can check the preimage of each single value of output. Note that:

$$X^{-1}(0) = \{1, 2\} \in \mathcal{H}_{\mathcal{U}}, \quad X^{-1}(10) = \{3\} \in \mathcal{H}_{\mathcal{U}}, \quad \text{and } X^{-1}(1) = \{4, 5\} \in \mathcal{H}_{\mathcal{U}},$$

so X is $\mathcal{H}_{\mathcal{U}}$ -measurable. □

(c) Define $Y : \Omega \rightarrow \mathbb{R}$ by:

$$Y(1) = 0, \quad Y(2) = Y(3) = Y(4) = Y(5) = 1.$$

Find the σ -algebra \mathcal{H}_Y generated by Y .

Solution. Here, we may note that the preimage is discrete, so we consider the collection:

$$\mathcal{Y} = \{\{1\}, \{2, 3, 4, 5\}\},$$

and our solution is the σ -algebra generated by \mathcal{Y} , namely:

$$\mathcal{H}_Y = \boxed{\{\emptyset, \{1\}, \{2, 3, 4, 5\}, \Omega\}}.$$
□

Problem II.3. Suppose $\{Z_k\}_{k=1}^{\infty}$ are independent $\mathcal{N}(0, 1)$ random variables. Show that $|Z_n(\omega)| = \mathcal{O}(\sqrt{\log(n)})$ as $n \rightarrow \infty$ almost surely.

Hint: You may need Borel-Cantelli lemma.

Proof. Here, we construct our set of events $\{A_k\}_{k=1}^{\infty}$. We let:

$$A_k := \{\omega \in \Omega : |Z_k| > 2\sqrt{\log k}\}.$$

Then, we note that:

$$\mathbb{P}(A_k) = 2\mathbb{P}(Z_k > 2\sqrt{\log k}) = 1 - \text{erf}(\sqrt{2\log k}),$$

and we want to show that $\sum_{k=1}^{\infty} \mathbb{P}(A_k) < +\infty$.

Here, we first notice that $\mathbb{P}(A_2) \lesssim 0.095891 \ll 0.25 = 1/2^2$, and we take their derivatives as:

$$\begin{aligned} \frac{d}{dk} [1 - \text{erf}(\sqrt{2\log k})] &= -\frac{2}{\sqrt{\pi}} \frac{d}{dk} \int_0^{\sqrt{2\log k}} e^{-t^2} dt \\ &= -\frac{2}{\sqrt{\pi}} \exp(-2\log k) \cdot \frac{1}{k\sqrt{2\log k}} = -\frac{2/\sqrt{\pi}}{k^3 \sqrt{\log k}}. \end{aligned}$$

Note that when we take the derivative of $1/k^2$ with respect to k , we obtain $-2/k^3$, in which we have:

$$\frac{d}{dk} \left[\frac{1}{k^2} \right] = -\frac{2}{k^3} > -\frac{2/\sqrt{\pi}}{k^3 \sqrt{\log k}} = \frac{d}{dk} [1 - \text{erf}(\sqrt{2 \log k})] \text{ for } k > 0.$$

Hence, we may conclude that:

$$\mathbb{P}(A_k) < \frac{1}{k^2} \text{ for all } k \geq 2.$$

Hence, we have:

$$\sum_{k=1}^{\infty} \mathbb{P}(A_k) \leq 1 + \sum_{k=2}^{\infty} \mathbb{P}(A_k) \leq 1 + \sum_{k=1}^{\infty} \frac{1}{k^2} < +\infty,$$

by the convergence of harmonic series, so our sets A_k satisfies the condition Borel-Cantelli lemma.

Now, since $\{Z_k\}_{k=1}^{\infty}$ is independent, we have:

$$\mathbb{P} \left(\limsup_{k \rightarrow \infty} (A_k) \right) = \mathbb{P} \left(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k \right) = 0,$$

which means that:

$$\mathbb{P}(\{\omega \in \Omega : |Z_k(\omega)| > 2\sqrt{\log k}\}) \rightarrow 0 \text{ as } k \rightarrow \infty,$$

which implies that $|Z_k(\omega)| \leq 2\sqrt{\log k}$ for all $\omega \in \Omega \setminus N$ where N is a null set, and hence:

$$|Z_n(\omega)| \leq 2\sqrt{\log n} \text{ as } n \rightarrow \infty \text{ a.s.},$$

which completes the proof. □

Problem II.4. Let $\{B_t\}_{t \geq 0}$ be one-dimensional Brownian motion.

(a) Find the density of the random vector (B_s, B_t) where $0 < s < t < \infty$.

Solution. Here, for the density function, we are able to express the probability as:

$$\begin{aligned} \mathbb{P}(B_s \in F_1, B_t \in F_2) &= \int_{F_1 \times F_2} \rho(s, x) \rho(t-s, y-x) dx dy \\ &= \int_{F_1 \times F_2} \frac{1}{\sqrt{2\pi s}} \exp \left(-\frac{|x|^2}{2s} \right) \cdot \frac{1}{\sqrt{2\pi(t-s)}} \exp \left(-\frac{|y-x|^2}{2(t-s)} \right) dx dy \\ &= \int_{F_1 \times F_2} \frac{1}{2\pi\sqrt{s(t-s)}} \exp \left(-\frac{|x|^2}{2s} - \frac{|y-x|^2}{2(t-s)} \right) dx dy. \end{aligned}$$

Hence, the density function is:

$$\rho(s, t, x, y) = \boxed{\frac{1}{2\pi\sqrt{s(t-s)}} \exp \left(-\frac{|x|^2}{2s} - \frac{|y-x|^2}{2(t-s)} \right)}.$$

□

(b) Find the conditional density of the vector (B_s, B_t) where $0 < s < t < 1$ under the condition $B_1 = 0$.

Solution. Here, we consider the conditional probability as:

$$\mathbb{P}(B_s \in F_1, B_t \in F_2 \mid B_1 = 0) = \frac{\mathbb{P}(B_s \in F_1, B_t \in F_2, B_1 = 0)}{\mathbb{P}(B_1 = 0)}.$$

Hence, the density function will be given as:

$$\begin{aligned} \rho(s, t, x, y) &= \frac{\rho(s, x)\rho(t-s, y-x)\rho(1-t, 0-y)}{\rho(1, 0)} \\ &= \frac{\frac{1}{\sqrt{2\pi s}} \exp\left(-\frac{|x|^2}{2s}\right) \cdot \frac{1}{\sqrt{2\pi(t-s)}} \exp\left(-\frac{|y-s|^2}{2(t-s)}\right) \cdot \frac{1}{\sqrt{2\pi(1-t)}} \exp\left(-\frac{|y|^2}{2(1-t)}\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{|0|^2}{2}\right)} \\ &= \boxed{\frac{1}{2\pi\sqrt{s(t-s)(1-t)}} \exp\left(-\frac{|x|^2}{2s} - \frac{|y-s|^2}{2(t-s)} - \frac{|y|^2}{2(1-t)}\right)}. \end{aligned}$$

(c) Consider the process $X_t = e^{-\alpha t/2} B_{e^{\alpha t}}$. Find the probability density of $(X_{t_1}, \dots, X_{t_n})$.

Solution. Again, the vector of the Brownian motion is the random vector of a multi-normal distribution, that is:

$$(B_{e^{\alpha t_1}}, B_{e^{\alpha t_2}}, \dots, B_{e^{\alpha t_n}}) \sim \mathcal{N}((0, 0, \dots, 0), \Sigma),$$

where $\Sigma \in \mathbb{R}^{n \times n}$ is a positive definite variance matrix, now we consider the exponentials, so the distribution would be:

$$(X_{t_1}, \dots, X_{t_n}) \sim \mathcal{N}((0, 0, \dots, 0), \Sigma),$$

hence, so the density function is:

$$\rho_{(X_{t_1}, \dots, X_{t_n}) \sim \mathcal{N}((0, 0, \dots, 0)}(x_1, x_2, \dots, x_n) = \boxed{2\pi|\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x_1, \dots, x_n)^\top \Sigma (x_1, \dots, x_n)\right)}.$$

Problem II.5. Let $\{X_n\}_{n \geq 1}$ be a sequence of independent random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with mean 0 and variance σ^2 . Denote $\mathcal{F}_n = \sigma\{X_k, 1 \leq k \leq n\}$. Let $\{Z_n\}_{n \geq 1}$ be a square-integrable process *predictable* with respect to \mathcal{F}_n (i.e., Z_{n+1} is \mathcal{F}_n -measurable).

(a) Show that $Y_n = \sum_{k=1}^n Z_k X_k$ is a square integrable martingale.

Proof. First, we want to show that Y_n is square integrable, for each finite n , it is a finite sum of random

variables, so we can reduce to the case of showing that $Z_k X_k$ is square integrable. Consider that:

$$\begin{aligned} \int_{\Omega} |Z_k(\omega) X_k(\omega)|^2 d\omega &= \int_{\{\omega \in \Omega: |\omega| \leq \delta\}} |Z_k(\omega) X_k(\omega)|^2 d\omega + \int_{\{\omega \in \Omega: |\omega| > \delta\}} |Z_k(\omega) X_k(\omega)|^2 d\omega \\ &\leq C_1 \int_{\{\omega \in \Omega: |\omega| \leq \delta\}} |Z_k(\omega)|^2 d\omega + C_2 \int_{\{\omega \in \Omega: |\omega| > \delta\}} |X_k(\omega)|^2 d\omega. \end{aligned}$$

Note that with choice of δ , Z_k will become bounded for larger than δ as it is square integrable, and X_k will be bounded for smaller than δ as it has mean of 0, hence the function is still square integrable.

For the martingale part, for any $n \geq 1$ and $j > n$, we have the conditional expectation as:

$$\mathbb{E}[Y_j \mid Y_1, \dots, Y_k] = \sum_{i=1}^j \mathbb{E}[Z_i X_i \mid Y_1, \dots, Y_k] = \sum_{i=1}^k Z_i X_i + \sum_{i=k+1}^j \underbrace{Z_i \mathbb{E}[X_i]}_{=0} = Y_k,$$

hence we have shown that Y_n is martingale.

Therefore, $\{Y_n\}$ is a sequence of square integrable martingale. \square

(b) Show that $\mathbb{E}[Y_n] = 0$ and that $\mathbb{E}[Y_n^2] = \sigma^2 \sum_{k=1}^n \mathbb{E}[Z_k^2]$.

Proof. Here, we may consider the expectation based on the different measure of X :

$$\mathbb{E}[Y_n] = \sum_{k=1}^n \mathbb{E}[Z_k X_k] = \sum_{k=1}^n \int_{\mathcal{F}_n} Z_k X_k d\mathbb{P} = \sum_{k=1}^n \left(\int_{\mathcal{F}_n} Z_k d\mathbb{P} \cdot \int_{\mathcal{F}_n} X_k d\mathbb{P} \right) = 0.$$

Then, we consider the second moment as (by independence):

$$\mathbb{E}[Y_n^2] = \text{Var}[Y_n] = \sum_{k=1}^n \text{Var}[Z_k] \text{Var}[X_k] = \sum_{k=1}^n \sigma^2 \mathbb{E}[Z_k^2] = \sigma^2 \sum_{k=1}^n \mathbb{E}[Z_k^2],$$

which finishes the proof. \square

(c) Let us assume $Z_k = \frac{1}{k}$. Is the martingale $\{Y_n\}_{n \geq 1}$ uniformly integrable?

Solution. Here, we may observe from (b) that we would have Y_n having expectation and variance as:

$$\mathbb{E}[Y_n] = 0 \text{ and } \mathbb{E}[Y_n^2] = \sigma^2 \sum_{k=1}^n \mathbb{E}[Z_k^2].$$

Hence, as $n \rightarrow \infty$, we have $\mathbb{E}[Y_n^2] < +\infty$ converging. Therefore, when we consider:

$$\lim_{m \rightarrow \infty} \sup_{i \geq 1} \left[\int_{|Y_i| \geq m} |Y_i| d\mathbb{P} \right],$$

where we have $\mathbb{P}(|Y_i| \geq m) \rightarrow 0$ as $m \rightarrow \infty$, and so the limit is zero and the martingale is uniformly integrable. \square

III Problem Set 3

Problem III.1. (Exercise 3.1 on [Øksendal]). Prove directly from the definition of Itô integrals that:

$$\int_0^t s dB_s = t B_t - \int_0^t B_s ds.$$

Hint: Note that:

$$\sum_j \Delta(s_j B_j) = \sum_j s_j \Delta B_j + \sum_j B_{j+1} \Delta s_j.$$

Proof. Here, from the definition, we note that s is already an elementary function, so we may consider the partition such that $\Delta t \rightarrow 0$:

$$\int_0^t s dB_s = \sum_j s_j \Delta B_j = \sum_j \Delta(s_j B_j) - \sum_j B_{j+1} \Delta s_j = t B_t - \int_0^t B_s ds,$$

as desired. \square

Problem III.2. (Exercise 3.5 on [Øksendal]). Prove directly that:

$$M_t = B_t^2 - t$$

is an \mathcal{F}_t -martingale.

Proof. First, we want to show that the process is integrable, *i.e.*, for any fixed $t > 0$:

$$\mathbb{E}[|M_t|] = \mathbb{E}[|B_t^2 - t|] = \mathbb{E}[|\chi^2(t) - t|] < +\infty.$$

Then, we suppose any $s \leq t$ fixed, and recall that Brownian motions are martingale, let:

$$\begin{aligned} \mathbb{E}[M_t \mid \mathcal{F}_s] &= \mathbb{E}[B_t^2 - t \mid \mathcal{F}_s] = \mathbb{E}[B_t^2 \mid \mathcal{F}_s] - t \\ &= \mathbb{E}[(B_t - B_s)^2 + 2B_t B_s - B_s^2 \mid \mathcal{F}_s] - t \\ &= \mathbb{E}[(B_t - B_s)^2 \mid \mathcal{F}_s] + \mathbb{E}[2B_t B_s \mid \mathcal{F}_s] - \mathbb{E}[B_s^2 \mid \mathcal{F}_s] - t \\ &= (t - s) + 2B_s \mathbb{E}[B_t \mid \mathcal{F}_s] - B_s^2 - t = B_s^2 - s = M_s, \end{aligned}$$

so M_t is an \mathcal{F}_t -martingale. \square

Problem III.3. (Exercise 3.7 on [Øksendal]). A famous result of Itô (1951) gives the following formula for n times *iterated Itô integrals*:

$$n! \int \cdots \left(\int \left(\int dB_{u_1} \right) dB_{u_2} \right) \cdots dB_{u_n} = t^{\frac{n}{2}} h_n \left(\frac{B_t}{\sqrt{t}} \right), \quad (2)$$

where h_n is the *Hermite polynomial* of degree n , defined by:

$$h_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} \left(e^{-\frac{x^2}{2}} \right); \quad n = 0, 1, 2, \dots$$

Thus $h_0(x) = 1$, $h_1(x) = x$, $h_2(x) = x^2 - 1$, $h_3(x) = x^3 - 3x$.

(a) Verify that in each of these n Itô integrals, the integrand satisfies the requirements for \mathcal{V} .

Proof. Here, we note that $h_n(x)$ is integrable, and we have:

$$f_n(t, \omega) = \frac{1}{(n-1)!} t^{\frac{n-1}{2}} h_{n-1} \left(\frac{B_t}{\sqrt{t}} \right),$$

we want to show:

- $(t, \omega) \mapsto f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$ measurable.
Note that for h_n is measurable over $\mathcal{B} \times \mathcal{F}$, so it is good.
- $f(t, \omega)$ is \mathcal{F}_t -adapted, i.e., $\omega \mapsto f(t, \omega)$ is \mathcal{F}_t -measurable.
Again, h_n is measurable of \mathcal{F} with fixed ω , so it is good.
- $\mathbb{E} \left[\int_0^T f(t, \omega)^2 dt \right] < +\infty$.
We have:

$$\mathbb{E} \left[\int_0^T f(t, \omega)^2 dt \right] \leq nT^2 < +\infty.$$

Hence, the integrands satisfies the requirements of being \mathcal{V} . \square

(b) Verify formula (2) for $n = 1, 2, 3$.

Proof. • ($n = 1$) We have:

$$1! \int_0^t dB_{u_1} = B_t = \sqrt{t} \cdot \frac{B_t}{\sqrt{t}}.$$

• ($n = 2$) We have:

$$2! \int_0^t B_{u_2} dB_{u_2} = B_t^2 - t = t \left(\frac{B_t^2}{t} - 1 \right)$$

• ($n = 3$) We have:

$$\begin{aligned} 3! \int_0^t \left(\frac{1}{2} B_{u_3}^2 - \frac{1}{2} u_3 \right) dB_{u_3} &= 3 \int_0^t B_{u_3}^2 dB_{u_3} - 3 \int_0^t u_3 dB_{u_3} = B_t^3 - 3 \int_0^t B_{u_3} du_3 + 3t B_t - 3 \int_0^t B_{u_3} du_3 \\ &= B_t^3 - 3t B_t = t^{\frac{3}{2}} \left(\frac{B_t^3}{t^{\frac{3}{2}}} - 3 \frac{B_t}{\sqrt{t}} \right). \end{aligned}$$

\square

(c) Use (b) to prove that $N_t = B_t^3 - 3tB_t$ is a martingale.

Proof. Note that Itô integrals are martingale, and since $B_t^3 - 3tB_t$ is an Itô integral, it is martingale. \square

Problem III.4. Compute:

(a)

$$\mathbb{E} \left[B_s \int_0^t B_r dB_r \right].$$

Solution. Here, we have:

$$\mathbb{E} \left[B_s \int_0^t B_r dB_r \right] = \mathbb{E} \left[B_s \cdot \frac{1}{2} (B_t^2 - t) \right] = \frac{1}{2} \mathbb{E}[B_s B_t^2 - t B_s] = \frac{1}{2} \mathbb{E}[B_s B_t^2] - \frac{1}{2} t \mathbb{E}[B_s] = \frac{1}{2} \mathbb{E}[B_s B_t^2].$$

Now, we consider two distinctive cases for $\mathbb{E}[B_s B_t^2]$:

• ($s \leq t$): We have:

$$\begin{aligned} \mathbb{E}[B_s B_t^2] &= \mathbb{E}[B_s (B_t - B_s)^2 - B_s^3 + 2B_s^2 B_t] = \mathbb{E}[B_s] \mathbb{E}[(B_t - B_s)^2] - \mathbb{E}[B_s^3] + 2\mathbb{E}[B_s^2 B_t] \\ &= 0 \cdot (t - s) - 0 + 2\mathbb{E}[B_s^2 B_t] = 2\mathbb{E}[B_s^2 B_t] \\ &= 2\mathbb{E}[B_s^2 (B_t - B_s) + B_s^3] = 2\mathbb{E}[B_s^2] \mathbb{E}[B_t - B_s] + 2\mathbb{E}[B_s^3] = 2 \cdot s \cdot 0 + 0 = 0. \end{aligned}$$

• ($s > t$): Otherwise, we have:

$$\mathbb{E}[B_s B_t^2] = \mathbb{E}[B_t^2 (B_s - B_t) + B_t^3] = \mathbb{E}[B_t^2] \mathbb{E}[B_s - B_t] + \mathbb{E}[B_t^3] = t \cdot 0 + 0 = 0.$$

Hence, we have the expectation evaluated as $\boxed{0}$. \square

(b)

$$\mathbb{E} \left[\left(B_s \int_0^t B_r dB_r \right)^2 \right] \text{ where } s \leq t.$$

Solution. Here, we have:

$$\begin{aligned} \mathbb{E} \left[\left(B_s \int_0^t B_r dB_r \right)^2 \right] &= \mathbb{E} \left[\left(B_s \cdot \frac{1}{2} (B_t^2 - t) \right)^2 \right] = \frac{1}{4} \mathbb{E}[B_s^2 (B_t^4 - 2t^2 B_t^2 + t^2)] \\ &= \frac{1}{4} \mathbb{E}[B_s^2 B_t^4 - 2t^2 B_s^2 B_t^2 + t^2 B_s^2] = \frac{1}{4} \mathbb{E}[B_s^2 B_t^4] - \frac{1}{2} t^2 \mathbb{E}[B_s^2 B_t^2] + \frac{1}{4} t^2 \mathbb{E}[B_s^2] \\ &= \frac{1}{4} \mathbb{E}[B_s^2 B_t^4] - \frac{1}{2} t^2 \mathbb{E}[B_s^2 B_t^2] + \frac{1}{4} t^2 s. \end{aligned}$$

Now, we investigate the two respective expectations.

- For $\mathbb{E}[B_s^2 B_t^2]$, we have:

$$\begin{aligned}\mathbb{E}[B_s^2 B_t^2] &= \mathbb{E}[B_s^2 (B_t - B_s)^2 - B_s^4 + 2B_s^3 B_t] = \mathbb{E}[B_s^2] \mathbb{E}[(B_t - B_s)^2] - \mathbb{E}[B_s^4] + 2\mathbb{E}[B_s^3 B_t] \\ &= s(t-s) - 3s^2 + 2\mathbb{E}[B_s^3 (B_t - B_s) + B_s^4] = s(t-s) - 3s^2 + 2\mathbb{E}[B_s^3 (B_t - B_s)] + 2\mathbb{E}[B_s^4] \\ &= s(t-s) - 3s^2 + 2 \cdot 0 \cdot (t-s) + 2 \cdot 3s^2 = st + 2s^2.\end{aligned}$$

- For $\mathbb{E}[B_s^2 B_t^4]$, we have:

$$\begin{aligned}\mathbb{E}[B_s^2 B_t^4] &= \mathbb{E}[B_s^2 (B_t - B_s)^4 + 4B_t^3 B_s^3 - 6B_t^2 B_s^4 + 4B_t B_s^5 - B_s^6] \\ &= \mathbb{E}[B_s^2 (B_t - B_s)^4] + 4\mathbb{E}[B_t^3 B_s^3] - 6\mathbb{E}[B_t^2 B_s^4] + 4\mathbb{E}[B_t B_s^5] - \mathbb{E}[B_s^6] \\ &= s \cdot 3 \cdot (t-s)^2 + 4\mathbb{E}[B_t^3 B_s^3] - 6\mathbb{E}[B_t^2 B_s^4] + 4\mathbb{E}[B_t B_s^5] - 15s^3 \\ &= 3t^2s - 6ts^2 - 12s^3 + 4\mathbb{E}[B_t^3 B_s^3] - 6\mathbb{E}[B_t^2 B_s^4] + 4\mathbb{E}[B_t B_s^5].\end{aligned}$$

Now, we have to evaluate the next terms:

- For $\mathbb{E}[B_t B_s^5]$, we have:

$$\mathbb{E}[B_t B_s^5] = \mathbb{E}[B_s^5 (B_t - B_s) + B_s^6] = 15s^3.$$

- For $\mathbb{E}[B_t^2 B_s^4]$, we have:

$$\mathbb{E}[B_t^2 B_s^4] = \mathbb{E}[B_s^4 (B_t - B_s)^2 + 2B_s^5 B_t - B_s^6] = 3s^2 \cdot (t-s) + 30s^3 - 15s^3 = 3ts^2 + 12s^3.$$

- For $\mathbb{E}[B_t^3 B_s^3]$, we have:

$$\begin{aligned}\mathbb{E}[B_t^3 B_s^3] &= \mathbb{E}[B_s^3 (B_t - B_s)^3 + 3B_s^4 B_t^2 - 3B_s^5 B_t + B_s^6] \\ &= 0 + 3(3ts^2 + 12s^3) - 3(15s^3) + 15s^3 = 9ts^2 + 6s^3.\end{aligned}$$

Now, we can combine all the calculations together:

$$\begin{aligned}\mathbb{E}[B_s^2 B_t^4] &= 3t^2s - 6ts^2 - 12s^3 + 4(9ts^2 + 6s^3) - 6(3ts^2 + 12s^3) + 4(15s^3) \\ &= 3t^2s + 12ts^2.\end{aligned}$$

Hence, we may conclude that:

$$\mathbb{E} \left[\left(B_s \int_0^t B_r dB_r \right)^2 \right] = \frac{1}{4} (3t^2s + 12ts^2) - \frac{1}{2} t^2 (st + 2s^2) + \frac{1}{4} t^2 s = \boxed{t^2 s + 3ts^2 - \frac{1}{2} st^3 + s^2 t^2}.$$

Problem III.5. (Exercise 3.17 on [Øksendal]). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X : \Omega \rightarrow \mathbb{R}$ be a random variable with $\mathbb{E}[|X|] < \infty$. If $\mathcal{G} \subset \mathcal{F}$ is a *finite* σ -algebra, then there exists a partition $\Omega = \bigcup_{i=1}^n G_i$ such that \mathcal{G} consists of \emptyset and unions of some (or all) of G_1, \dots, G_n .

(a) Explain why $\mathbb{E}[X | \mathcal{G}](\omega)$ is constant on each G_i .

Proof. Here, we may consider G as a random variable, namely:

$$G = \sum_{i=1}^n a_i \mathbb{1}_{G_i}, \text{ where } G_i \in \mathcal{G}.$$

Then, the conditional expectation for each given $\omega \in G_j$ is:

$$\mathbb{E}[X | \mathcal{G}](\omega) = \sum_{i=1}^n a_i \mathbb{1}_{G_i} = a_j. \quad \square$$

(b) Assume that $\mathbb{P}[G_i] > 0$. Show that:

$$\mathbb{E}[X | \mathcal{G}](\omega) = \frac{\int_{G_i} X d\mathbb{P}}{\mathbb{P}(G_i)} \text{ for } \omega \in G_i.$$

Proof. Here, we just need to verify that:

$$\int_{G_i} \mathbb{E}[X | \mathcal{G}](\omega) d\mathbb{P}(\omega) = \int_{G_i} \frac{\int_{G_i} X d\mathbb{P}}{\mathbb{P}(G_i)} d\mathbb{P} = \frac{\int_{G_i} X d\mathbb{P}}{\mathbb{P}(G_i)} \int_{G_i} d\mathbb{P} = \frac{\int_{G_i} X d\mathbb{P}}{\mathbb{P}(G_i)} \cdot \mathbb{P}(G_i) = \int_{G_i} X d\mathbb{P},$$

so it satisfies the condition for conditional expectation. \square

(c) Suppose X assumes only finitely many values a_1, \dots, a_m . Then from elementary probability theory:

$$\mathbb{E}[X | G_i] = \sum_{k=1}^m a_k \mathbb{P}[X = a_k | G_i].$$

Compare with (b) and verify that:

$$\mathbb{E}[X | G_i] = \mathbb{E}[X | \mathcal{G}](\omega) \text{ for } \omega \in G_i.$$

Thus, we may regard the conditional expectation as defined as a (substantial) generalization of the conditional expectation in the elementary probability theory.

Proof. Here, consider $\omega \in G_i$ being arbitrary, we have:

$$\begin{aligned} \mathbb{E}[X | \mathcal{G}](\omega) &= \frac{\int_{G_i} X d\mathbb{P}}{\mathbb{P}(G_i)} = \frac{\sum_{k=1}^m a_k \mathbb{P}(X = a_k \wedge a_k \in G_i)}{\mathbb{P}(G_i)} \\ &= \sum_{k=1}^m \frac{a_k \mathbb{P}(X = a_k \wedge a_k \in G_i)}{\mathbb{P}(G_i)} = \sum_{k=1}^m a_k \mathbb{P}(X = a_k | G_i) = \mathbb{E}[X | G_i], \end{aligned}$$

so the general definition is aligned to the elementary probability theory definition. \square

Problem III.6. (Exercise 3.18 on [Øksendal]). Let B_t be 1-dimensional Brownian motion and let $\sigma \in \mathbb{R}$ be constant. Prove directly from the definition that:

$$M_t := \exp \left(\sigma B_t - \frac{1}{2} \sigma^2 t \right); \quad t \geq 0$$

is a martingale.

Hint: If $s > t$, then $\mathbb{E}[\exp(\sigma B_s - \frac{1}{2} \sigma^2 s) | \mathcal{F}_t] = \mathbb{E}[\exp(\sigma(B_s - B_t)) \times \exp(\sigma B_t - \frac{1}{2} \sigma^2 s) | \mathcal{F}_t]$.

Proof. Here, by the hint, we may notice that:

$$\begin{aligned} \mathbb{E}[M_s | \mathcal{F}_t] &= \mathbb{E} \left[\exp \left(\sigma B_s - \frac{1}{2} \sigma^2 s \right) | \mathcal{F}_t \right] \\ &= \mathbb{E} \left[\exp(\sigma(B_s - B_t)) \cdot \exp \left(\sigma B_t - \frac{1}{2} \sigma^2 s \right) | \mathcal{F}_t \right] \\ &= \mathbb{E}[\exp(\sigma(B_s - B_t)) | \mathcal{F}_t] \cdot \mathbb{E} \left[\exp \left(\sigma B_t - \frac{1}{2} \sigma^2 s \right) | \mathcal{F}_t \right] \\ &= \exp \left(\frac{1}{2} \sigma^2 (s - t) \right) \cdot \exp \left(-\frac{1}{2} \sigma^2 s \right) \cdot \mathbb{E}[\exp(\sigma B_t) | \mathcal{F}_t] \\ &= \exp \left(-\frac{1}{2} \sigma^2 t \right) \cdot \exp(\sigma B_t) \\ &= \exp \left(\sigma B_t - \frac{1}{2} \sigma^2 t \right) = M_t. \end{aligned}$$

Moreover, we consider the expectation of M_t , namely:

$$\begin{aligned} \mathbb{E}[|M_t|] &= \mathbb{E} \left[\left| \exp \left(\sigma B_t - \frac{1}{2} \sigma^2 t \right) \right| \right] = \mathbb{E} \left[\exp \left(\sigma B_t - \frac{1}{2} \sigma^2 t \right) \right] \\ &= \exp \left(-\frac{1}{2} \sigma^2 t \right) \mathbb{E}[\exp(\sigma B_t)] = \exp \left(-\frac{1}{2} \sigma^2 t \right) \exp \left(\frac{1}{2} \sigma^2 t \right) = 1 < +\infty. \end{aligned}$$

Hence, we have shown that M_t is martingale. □

IV Problem Set 4

Problem IV.1. (Exercise 4.1 on [Øksendal]). Use Itô's formula to write the following stochastic processes Y_t in the standard form:

$$dY_t = u(t, \omega)dt + v(t, \omega)dB_t$$

for suitable choices of $u \in \mathbb{R}^n$, $v \in \mathbb{R}^{n \times m}$ and dimensions n, m :

(a) $Y_t = B_t^2$, where B_t is 1-dimensional.

Solution. Here, we note that:

$$Y_t = B_t^2 = \int_0^t ds + 2 \int_0^t B_s dB_s,$$

hence it is in standard form as:

$$dY_t = \boxed{dt + B_t dB_t}.$$

□

(b) $Y_t = 2 + t + e^{B_t}$, where B_t is 1-dimensional.

Solution. Here, we may apply **Itô formula**, namely:

$$\begin{aligned} dY_t &= \frac{\partial}{\partial t}[2 + t + e^{B_t}]dt + \frac{\partial}{\partial x}[2 + t + e^{B_t}]dB_t + \frac{1}{2} \frac{\partial^2}{\partial x^2}[2 + t + e^{B_t}](dB_t)^2 \\ &= dt + e^{B_t}dB_t + \frac{1}{2}e^{B_t}dt = \boxed{\left(1 + \frac{1}{2}e^{B_t}\right)dt + e^{B_t}dB_t}. \end{aligned}$$

□

(c) $Y_t = B_1^2(t) + B_2^2(t)$, where (B_1, B_2) is 2-dimensional.

Solution. Here, we may apply the **general Itô formula** as:

$$\begin{aligned} dY_t &= \frac{\partial}{\partial t}[B_1^2(t) + B_2^2(t)]dt + \frac{\partial}{\partial B_1}[B_1^2(t) + B_2^2(t)]dB_1 + \frac{\partial}{\partial B_2}[B_1^2(t) + B_2^2(t)]dB_2 + \\ &\quad \frac{1}{2} \frac{\partial^2}{\partial B_1^2}[B_1^2(t) + B_2^2(t)](dB_1)^2 + \frac{1}{2} \frac{\partial^2}{\partial B_2^2}[B_1^2(t) + B_2^2(t)](dB_2)^2 + \frac{\partial^2}{\partial B_1 \partial B_2}[B_1^2(t) + B_2^2(t)](dB_1 dB_2) \\ &= 0dt + 2B_1 dB_1 + 2B_2 dB_2 + dt + dt + 0\delta_{1,2}dt \\ &= \boxed{2dt + 2B_1(t)dB_1(t) + 2B_2(t)dB_2(t)}. \end{aligned}$$

□

(d) $Y_t = (t_0 + t, B_t)$, where B_t is 1-dimensional.

Solution. Here, we need to consider the process component-wise, denoted $Y_t = (Y_t^{(1)}, Y_t^{(2)})$.

For $Y_t^{(1)}$, we have:

$$d(Y_t^{(1)}) = \frac{\partial}{\partial t}[t_0 + t]dt + \frac{\partial}{\partial B_t}[t_0 + t]dB_t + \frac{1}{2} \frac{\partial}{\partial B_t^2}[t_0 + t](dB_t)^2 = dt.$$

For $Y_t^{(2)}$, we have:

$$d(Y_t^{(2)}) = \frac{\partial}{\partial t}[B_t]dt + \frac{\partial}{\partial B_t}[B_t]dB_t + \frac{1}{2} \frac{\partial}{\partial B_t^2}[B_t](dB_t)^2 = dB_t.$$

Hence, the process can be written in standard form as:

$$dY_t = \boxed{\begin{pmatrix} 1 \\ 0 \end{pmatrix} dt + \begin{pmatrix} 0 \\ 1 \end{pmatrix} dB_t}.$$

□

(e) $Y_t = (B_1(t) + B_2(t) + B_3(t), B_2^2(t) - B_1(t)B_3(t))$, where (B_1, B_2, B_3) is 3-dimensional.

Solution. Again, we shall consider the process component-wise, denoted $Y_t = (Y_t^{(1)}, Y_t^{(2)})$. For $Y_t^{(1)}$, we have:

$$\begin{aligned} dY_t^{(1)} &= \frac{\partial}{\partial t}[B_1 + B_2 + B_3]dt + \frac{\partial}{\partial B_1}[B_1 + B_2 + B_3]dB_1 + \frac{\partial}{\partial B_2}[B_1 + B_2 + B_3]dB_2 + \frac{\partial}{\partial B_3}[B_1 + B_2 + B_3]dB_3 + \\ &\quad \frac{1}{2} \frac{\partial}{\partial B_1^2}[B_1 + B_2 + B_3](dB_1)^2 + \frac{1}{2} \frac{\partial}{\partial B_2^2}[B_1 + B_2 + B_3](dB_2)^2 + \frac{1}{2} \frac{\partial}{\partial B_3^2}[B_1 + B_2 + B_3](dB_3)^2 + \\ &\quad \frac{\partial}{\partial B_1 \partial B_2}[B_1 + B_2 + B_3]dB_1 dB_2 + \frac{\partial}{\partial B_1 \partial B_3}[B_1 + B_2 + B_3]dB_1 dB_3 + \frac{\partial}{\partial B_2 \partial B_3}[B_1 + B_2 + B_3]dB_2 dB_3 \\ &= dB_1(t) + dB_2(t) + dB_3(t). \end{aligned}$$

For $Y_t^{(2)}$, we have:

$$\begin{aligned} dY_t^{(2)} &= \frac{\partial}{\partial t}[B_2^2 - B_1 B_3]dt + \frac{\partial}{\partial B_1}[B_2^2 - B_1 B_3]dB_1 + \frac{\partial}{\partial B_2}[B_2^2 - B_1 B_3]dB_2 + \frac{\partial}{\partial B_3}[B_2^2 - B_1 B_3]dB_3 + \\ &\quad \frac{1}{2} \frac{\partial}{\partial B_1^2}[B_2^2 - B_1 B_3](dB_1)^2 + \frac{1}{2} \frac{\partial}{\partial B_2^2}[B_2^2 - B_1 B_3](dB_2)^2 + \frac{1}{2} \frac{\partial}{\partial B_3^2}[B_2^2 - B_1 B_3](dB_3)^2 + \\ &\quad \frac{\partial}{\partial B_1 \partial B_2}[B_2^2 - B_1 B_3]dB_1 dB_2 + \frac{\partial}{\partial B_1 \partial B_3}[B_2^2 - B_1 B_3]dB_1 dB_3 + \frac{\partial}{\partial B_2 \partial B_3}[B_2^2 - B_1 B_3]dB_2 dB_3 \\ &= -B_3 dB_1 + 2B_2 dB_2 - B_1 dB_3 + (dB_2)^2 = dt - B_3(t)dB_1(t) + 2B_2(t)dB_2(t) - B_1(t)dB_3(t). \end{aligned}$$

Hence, when we combine the process together, we have:

$$dY_t = \boxed{\begin{pmatrix} 0 \\ 1 \end{pmatrix} dt + \begin{pmatrix} 1 \\ -B_3(t) \end{pmatrix} dB_1(t) + \begin{pmatrix} 1 \\ 2B_2(t) \end{pmatrix} dB_2(t) + \begin{pmatrix} 1 \\ -B_1(t) \end{pmatrix} dB_3(t)}.$$

□

Problem IV.2. (Exercise 4.2 on [Øksendal]). Use Itô formula to prove that:

$$\int_0^t B_s^2 dB_s = \frac{1}{3} B_t^3 - \int_0^t B_s ds.$$

Proof. Here, we write B_t^3 in terms of differential form:

$$dB_t^3 = \frac{\partial}{\partial t}[B_t^3]dt + \frac{\partial}{\partial B_t}[B_t^3]dB_t + \frac{1}{2} \cdot \frac{\partial^2}{\partial B_t^2}[B_t^3](dB_t)^2 = 3B_t dt + 3B_t^2 dB_t,$$

and hence if we were to write them in standard form, we have:

$$B_t^3 = 3 \int_0^t B_s ds + 3 \int_0^t B_s^2 dB_s,$$

and if we were to divide everything by 3 and move around, we have:

$$\int_0^t B_s^2 dB_s = \frac{1}{3} B_t^3 - \int_0^t B_s ds,$$

as desired. \square

Problem IV.3. (Exercise 4.3 on [Øksendal]). Let X_t, Y_t be Itô processes in \mathbb{R} . Prove that:

$$d(X_t Y_t) = X_t dY_t + Y_t dX_t + dX_t \cdot dY_t.$$

Deduce the following general *integration by parts formula*:

$$\int_0^t X_s dY_s = X_t Y_t - X_0 Y_0 - \int_0^t Y_s dX_s - \int_0^t dX_s \cdot dY_s.$$

Proof. Here, we may use the **general Itô formula** to find the differential form as:

$$\begin{aligned} d(X_t Y_t) &= \frac{\partial}{\partial t}[X_t Y_t]dt + \frac{\partial}{\partial X_t}[X_t Y_t]dX_t + \frac{\partial}{\partial Y_t}[X_t Y_t]dY_t + \\ &\quad \frac{1}{2} \frac{\partial^2}{\partial X_t^2}[X_t Y_t](dX_t)^2 + \frac{1}{2} \frac{\partial^2}{\partial Y_t^2}[X_t Y_t](dY_t)^2 + \frac{\partial^2}{\partial X_t \partial Y_t}[X_t Y_t]dX_t dY_t \\ &= Y_t dX_t + X_t dY_t + dX_t \cdot dY_t. \end{aligned}$$

Then, we can write the differential form in standard form:

$$X_t Y_t = X_0 Y_0 + \int_0^t Y_s dX_s + \int_0^t X_s dY_s + \int_0^t dX_s \cdot dY_s.$$

Then, we can move around the terms to get the *integration by parts formula*:

$$\int_0^t X_s dY_s = X_t Y_t - X_0 Y_0 - \int_0^t Y_s dX_s - \int_0^t dX_s \cdot dY_s. \quad \square$$

Problem IV.4. (Exercise 4.4 on [Øksendal]). Exponential martingales.

Suppose $\theta(t, \omega) = (\theta_1(t, \omega), \dots, \theta_n(t, \omega)) \in \mathbb{R}^n$ with $\theta_k(t, \omega) \in \mathcal{V}[0, T]$ for $k = 1, \dots, n$, where $T \leq \infty$. Define:

$$Z_t = \exp \left[\int_0^t \theta(s, \omega) dB(s) - \frac{1}{2} \int_0^t \theta^2(s, \omega) ds \right]; \quad 0 \leq t \leq T,$$

where $B(s) \in \mathbb{R}^n$ and $\theta^2 = \theta \cdot \theta$ as the dot product.

(a) Use Itô's formula to prove that:

$$dZ_t = Z_t \theta(t, \omega) dB(t).$$

Proof. Here, we first consider another process X_t such that:

$$dX_t = \theta(t, \omega) dB(t) - \frac{1}{2} \theta^2(t, \omega) dt.$$

Here, we have $Z_t = \exp(X_t)$, and we use the Itô formula on a given process:

$$\begin{aligned} dZ_t &= \frac{\partial}{\partial t} [\exp(X_t)] dt + \frac{\partial}{\partial X_t} [\exp(X_t)] dX_t + \frac{1}{2} \frac{\partial}{\partial X_t^2} [\exp(X_t)] (dX_t)^2 \\ &= 0dt + \exp(X_t) dX_t + \frac{1}{2} \exp(X_t) (dX_t)^2 \\ &= \exp(X_t) \left(\theta(t, \omega) dB(t) - \frac{1}{2} \theta^2(t, \omega) dt \right) + \frac{1}{2} \exp(X_t) \left(\theta(t, \omega) dB(t) - \frac{1}{2} \theta^2(t, \omega) dt \right)^2 \\ &= \exp(X_t) \theta(t, \omega) dB(t) - \frac{1}{2} \exp(X_t) \theta^2(t, \omega) dt + \frac{1}{2} \exp(X_t) \theta^2(t, \omega) (dB(t))^2 - \\ &\quad \frac{1}{4} \exp(X_t) \theta^3(t, \omega) dB(t) dt + \frac{1}{8} \exp(X_t) \theta^4(t, \omega) (dt)^2 \\ &= \exp(X_t) \theta(t, \omega) dB(t) - \frac{1}{2} \exp(X_t) \theta^2(t, \omega) dt + \frac{1}{2} \exp(X_t) \theta^2(t, \omega) dt \\ &= \exp(X_t) \theta(t, \omega) dB(t) = Z_t \theta(t, \omega) dB(t), \end{aligned}$$

as desired. \square

(b) Deduce that Z_t is a martingale for $t \leq T$, provided that:

$$Z_t \theta_k(t, \omega) \in \mathcal{V}[0, T] \text{ for } 1 \leq k \leq n.$$

Proof. By part (a), we note that Z_t can be written as:

$$Z_t \theta_k(t, \omega) = \int_0^t Z_s \theta_k(t, \omega) dB(s) = \int_0^t \sum_{k=1}^n Z_s \theta_k(t, \omega) dB_k(s) = \sum_{k=1}^n \int_0^t Z_s \theta_k(t, \omega) dB_k(s).$$

Note that since $Z_s \theta_k(t, \omega) \in \mathcal{V}[0, T]$ for all k , the integral $\int_0^t Z_s \theta_k(t, \omega) dB_k(s)$ must be martingale, and a finite sum of martingale is still martingale. \square

V Problem Set 5

Problem V.1. (Exercise 4.13 on [Øksendal]). Let $dX_t = u(t, \omega)dt + dB_t$, where $u \in \mathbb{R}$ and $B_t \in \mathbb{R}$, be an Itô process and assume for simplicity that u is bounded. Then we know that unless $u = 0$ the process X_t is not an \mathcal{F}_t -martingale. However, it turns out that we can construct an \mathcal{F}_t -martingale from X_t by multiplying by a suitable exponential martingale. More precisely, define:

$$Y_t = X_t M_t,$$

where:

$$M_t = \exp \left(- \int_0^t u(r, \omega) dB_r - \frac{1}{2} \int_0^t u^2(r, \omega) dr \right).$$

Use Itô's formula to prove that Y_t is an \mathcal{F}_t -martingale.

Proof. Here, we think about the Itô formula on Y_t by considering the product rule:

$$dY_t = d(X_t M_t) = X_t dM_t + M_t dX_t + dX_t dM_t$$

Recall from Problem IV.4(a), we have:

$$dM_t = -M_t u(t, \omega) dB_t,$$

and hence we can continue the product rule as:

$$\begin{aligned} dY_t &= X_t M_t (-u(t, \omega) dB_t) + M_t (u(t, \omega) dt + dB_t) + (u(t, \omega) dt + dB_t) M_t (-u(t, \omega) dB_t) \\ &= -X_t M_t u(t, \omega) dB_t + M_t u(t, \omega) dt + M_t dB_t - M_t u(t, \omega) dt \\ &= M_t (1 - X_t u(t, \omega)) dB_t. \end{aligned}$$

Hence, the Itô formula of Y_t contains to dt terms, and recall from Problem IV.4(b), since u is a Itô process, so M_t is martingale, thus $\mathbb{E}[|M_t|] < +\infty$. Consider for X_t that:

$$\begin{aligned} \mathbb{E}[|X_t|] &= \mathbb{E} \left[\left| \int_0^t u(r, \omega) dr + \int_0^t dB_r \right| \right] \\ &\leq \mathbb{E} \left[\left| \int_0^t u(r, \omega) dr \right| \right] + \mathbb{E} \left[\left| \int_0^t dB_r \right| \right] \leq \mathbb{E} \left[\int_0^t |u(r, \omega)| dr \right] + \mathbb{E}[|B_t|] < +\infty, \end{aligned}$$

since $u(r, \omega)$ is bounded and $\mathbb{E}[|B_t|^2] = t$, so we have $\mathbb{E}[|X_t M_t|] \leq \mathbb{E}[|X_t|] \cdot \mathbb{E}[|M_t|] < +\infty$, hence have proven that Y_t is, in fact, a \mathcal{F}_t martingale. \square

Problem V.2. (Exercise 4.16 on [Øksendal]). If Y is an \mathcal{F}_T -measurable random variable such that $\mathbb{E}[|Y|^2] < \infty$, then the process:

$$M_t := \mathbb{E}[Y | \mathcal{F}_t]; \quad 0 \leq t \leq T$$

is a martingale with respect to $\{\mathcal{F}_t\}_{0 \leq t \leq T}$.

(a) Show that $\mathbb{E}[M_t^2] < \infty$ for all $t \in [0, T]$.

Proof. Note we have \mathcal{F}_t as a σ -algebra, so we have:

$$\mathbb{E}[(\mathbb{E}[Y | \mathcal{F}_t])^2] \leq \mathbb{E}[Y^2] < +\infty,$$

as desired. \square

(b) According to the martingale representation theorem, there exists a unique process $g(t, \omega) \in \mathcal{V}(0, T)$ such that:

$$M_t = \mathbb{E}[M_0] + \int_0^t g(s, \omega) dB(s); \quad t \in [0, T].$$

Find g in the following cases:

1. $Y(\omega) = B^2(T)$.
2. $Y(\omega) = B^3(T)$.
3. $Y(\omega) = \exp(\sigma B(T))$, where $\sigma \in \mathbb{R}$ is a constant.

Hint: Use that $\exp(\sigma B(t) - \frac{1}{2}\sigma^2 t)$ is a martingale.

Solution.

1. Now, we have:

$$M_t = \mathbb{E}[B_T^2 | \mathcal{F}_t].$$

Here, we decompose that:

$$B_T^2 = (B_t + (B_T - B_t))^2 = B_t^2 + 2B_t(B_T - B_t) + (B_T - B_t)^2,$$

so we have the conditional expectation as:

$$\begin{aligned} \mathbb{E}[B_T^2 | \mathcal{F}_t] &= \mathbb{E}[B_t^2 + 2B_t(B_T - B_t) + (B_T - B_t)^2 | \mathcal{F}_t] \\ &= \mathbb{E}[B_t^2 | \mathcal{F}_t] + 2\mathbb{E}[B_t | \mathcal{F}_t]\mathbb{E}[B_T - B_t | \mathcal{F}_t] + \mathbb{E}[(B_T - B_t)^2 | \mathcal{F}_t] \\ &= B_t^2 + 2B_t\mathbb{E}[B_t - B_t] + \mathbb{E}[(B_T - B_t)^2] = B_t^2 + T - t. \end{aligned}$$

Then, we apply the Itô formula and obtain that:

$$dM_t = -dt + 2B_t dB_t + \frac{1}{2} \cdot 2dt = 2B_t dB_t,$$

hence we have $g(s, \omega) = \boxed{2B_s(\omega)}$.

2. Now, we have:

$$M_t = \mathbb{E}[B_T^3 | \mathcal{F}_t],$$

and we similarly construct the decomposition as:

$$B_T^3 = (B_t + (B_T - B_t))^3 = B_t^3 + 3B_t^2(B_T - B_t) + 3B_t(B_T - B_t)^2 + (B_T^2 - B_t)^3.$$

Now, we apply the conditional expectation as:

$$\begin{aligned}
 \mathbb{E}[B_T^3 \mid \mathcal{F}_t] &= \mathbb{E}[B_t^3 + 3B_t^2(B_T - B_t) + 3B_t(B_T - B_t)^2 + (B_T^2 - B_t)^3 \mid \mathcal{F}_t] \\
 &= \mathbb{E}[B_t^3 \mid \mathcal{F}_t] + 3\mathbb{E}[B_t^2 \mid \mathcal{F}_t]\mathbb{E}[B_T - B_t \mid \mathcal{F}_t] \\
 &\quad + 3\mathbb{E}[B_t \mid \mathcal{F}_t]\mathbb{E}[(B_T - B_t)^2 \mid \mathcal{F}_t] + \mathbb{E}[(B_T^2 - B_t)^3 \mid \mathcal{F}_t] \\
 &= B_t^3 + 3B_t(T - t) + 3B_t^2 \cdot 0 + T - t = B_t^3 + 3TB_t - 3tB_t.
 \end{aligned}$$

Then, we apply the Itô formula and obtain that:

$$\begin{aligned}
 dM_t &= -3B_t dt + (3B_t^2 + 3T - 3t)dB_t + \frac{1}{2} \cdot 6B_t dt \\
 &= 3(B_t^2 + T - t)dB_t,
 \end{aligned}$$

and hence we have $g(s, \omega) = \boxed{3(B_t^2 + T - t)}$.

3. Here, we have:

$$M_t = \mathbb{E}[\exp(\sigma B_T) \mid \mathcal{F}_t],$$

and we consider that:

$$\exp(\sigma B_T) = \exp(\sigma(B_t + (B_T - B_t))) = \exp(\sigma B_t) \exp(\sigma(B_T - B_t)),$$

and we hence have that:

$$\begin{aligned}
 \mathbb{E}[\exp(\sigma B_T) \mid \mathcal{F}_t] &= \mathbb{E}[\exp(\sigma B_t) \exp(\sigma(B_T - B_t)) \mid \mathcal{F}_t] \\
 &= \mathbb{E}[\exp(\sigma B_t) \mid \mathcal{F}_t] \cdot \mathbb{E}[\exp(\sigma(B_T - B_t)) \mid \mathcal{F}_t] \\
 &= \exp(\sigma B_t) \cdot \exp\left(\frac{\sigma^2(T - t)}{2}\right).
 \end{aligned}$$

Hence, we apply Itô formula to obtain that:

$$dM_t = M_t \left(-\frac{\sigma^2}{2}\right) dt + M_t \cdot \sigma dB_t + \frac{1}{2}M_t \cdot \sigma^2 dt = M_t \cdot \sigma dB_t,$$

and hence we have $g(s, \omega) = \boxed{\sigma \exp(\sigma B_t) \cdot \exp\left(\frac{\sigma^2(T - t)}{2}\right)}$. □

Problem V.3. (Exercise 5.7 on [Øksendal]). The *mean-reverting Ornstein-Uhlenbeck process* is the solution X_t of the stochastic differential equation:

$$dX_t = (m - X_t)dt + \sigma dB_t,$$

where m, σ are real constants, and $B_t \in \mathbb{R}$.

(a) Solve this equation using the integrating factor similar to e^t .

Solution. Here, we multiply by the integration factor that:

$$F_t = \exp(t), \quad \text{and so } dF_t = \exp(t)dt.$$

Then, we consider the product rule as:

$$\begin{aligned} d(F_t X_t) &= F_t dX_t + X_t dF_t + dF_t dX_t \\ &= \exp(t)((m - X_t)dt + \sigma dB_t) + \exp(t)X_t dt + \exp(t)dt((m - X_t)dt + \sigma dB_t) \\ &= \exp(t)m dt + \exp(t)\sigma dB_t. \end{aligned}$$

Thereby, we write the equation in standard form:

$$\begin{aligned} F_t X_t &= F_0 X_0 + m \int_0^t \exp(s)ds + \sigma \int_0^t \exp(s)dB_s = F_0 X_0 + m(\exp(t) - 1) + \sigma \int_0^t \exp(s)dB_s, \\ \exp(t)X_t &= X_0 + m \exp(t) - m + \sigma \int_0^t \exp(s)dB_s, \\ X_t &= \boxed{X_0 \exp(-t) + m - m \exp(-t) + \sigma \int_0^t \exp(s-t)dB_s}. \end{aligned}$$

□

(b) Find $\mathbb{E}[X_t]$ and $\text{Var}[X_t] := \mathbb{E}[(X_t - \mathbb{E}[X_t])^2]$.

Solution. For the expectation, we have:

$$\begin{aligned} \mathbb{E}[X_t] &= \mathbb{E} \left[X_0 \exp(-t) + m - m \exp(-t) + \sigma \int_0^t \exp(s-t)dB_s \right] \\ &= X_0 \exp(-t) + m - m \exp(-t) + \sigma \underbrace{\mathbb{E} \left[\int_0^t \exp(s-t)dB_s \right]}_{\text{deterministic, 0}} \\ &= \boxed{X_0 \exp(-t) + m - m \exp(-t)}. \end{aligned}$$

For the variance, we hence have:

$$\begin{aligned} \text{Var}[X_t] &:= \mathbb{E}[(X_t - \mathbb{E}[X_t])^2] = \mathbb{E} \left[\left(\sigma \int_0^t \exp(s-t)dB_s \right)^2 \right] \\ &= \sigma^2 \mathbb{E} \left[\left(\int_0^t \exp(s-t)dB_s \right)^2 \right] = \sigma^2 \int_0^t \exp(2(s-t))ds \\ &= \sigma^2 \left[\frac{\exp(2(s-t))}{2} \right]_{s=0}^{s=t} = \sigma^2 \left(\frac{1}{2} - \frac{\exp(-2t)}{2} \right) = \boxed{\frac{\sigma^2}{2}(1 - \exp(-2t))}. \end{aligned}$$

□

Problem V.4. (Exercise 5.8 on [Øksendal]). Solve the (2-dimensional) stochastic differential equation:

$$\begin{aligned} dX_1(t) &= X_2(t)dt + \alpha dB_1(t) \\ dX_2(t) &= -X_1(t)dt + \beta dB_2(t) \end{aligned}$$

where $(B_1(t), B_2(t))$ is 2-dimensional Brownian motion and α, β are constants.

This is a model of a vibrating string subject to a stochastic force.

Solution. Here, we denote $X(t) := (X_1(t), X_2(t))$ and $B(t) := (B_1(t), B_2(t))$, so our differential equation becomes:

$$dX(t) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} X(t)dt + \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} dB(t).$$

Here, we shall use the integrating factor that:

$$F(t) = \exp \left(t \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^n.$$

We note that the matrix has order 4, that is:

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \text{ and} \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Hence, we have the matrix exponential as:

$$F(t) = \begin{pmatrix} \sum_{n \in [0]_4} \frac{t^n}{n!} - \sum_{n \in [2]_4} \frac{t^n}{n!} & \sum_{n \in [1]_4} \frac{t^n}{n!} - \sum_{n \in [3]_4} \frac{t^n}{n!} \\ \sum_{n \in [3]_4} \frac{t^n}{n!} - \sum_{n \in [1]_4} \frac{t^n}{n!} & \sum_{n \in [0]_4} \frac{t^n}{n!} - \sum_{n \in [2]_4} \frac{t^n}{n!} \end{pmatrix} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}.$$

Hence, we have the solution as:

$$\begin{aligned} X(t) &= F(t)X(0) + F(t) \int_0^t F(-s) \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} B_t ds \\ &= \begin{pmatrix} X_1(0) \cos t + X_2(0) \sin t \\ -X_1(0) \sin t + X_2(0) \cos t \end{pmatrix} + \int_0^t \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos(-s) & \sin(-s) \\ -\sin(-s) & \cos(-s) \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} dB_1(s) \\ dB_2(s) \end{pmatrix} \\ &= \begin{pmatrix} X_1(0) \cos t + X_2(0) \sin t \\ -X_1(0) \sin t + X_2(0) \cos t \end{pmatrix} + \int_0^t \begin{pmatrix} \alpha \cos(t-s) & \beta \sin(t-s) \\ -\alpha \sin(t-s) & \beta \cos(t-s) \end{pmatrix} \begin{pmatrix} dB_1(s) \\ dB_2(s) \end{pmatrix}. \end{aligned}$$

Hence, we have the solutions, respectively, as:

$$\begin{aligned} X_1(t) &= \boxed{X_1(0) \cos t + X_2(0) \sin t + \alpha \int_0^t \cos(t-s) dB_1(s) + \beta \int_0^t \sin(t-s) dB_2(s)}, \\ X_2(t) &= \boxed{-X_1(0) \sin t + X_2(0) \cos t - \alpha \int_0^t \sin(t-s) dB_1(s) + \beta \int_0^t \cos(t-s) dB_2(s)}. \end{aligned}$$

□

Problem V.5. (Exercise 5.16 on [Øksendal]). For more general nonlinear stochastic differential equation of the form:

$$dX_t = f(t, X_t)dt + c(t)X_t dB_t, \quad X_0 = x, \quad (3)$$

where $f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and $c : \mathbb{R} \rightarrow \mathbb{R}$ are given continuous (deterministic functions).

(a) Define the ‘integration factor’:

$$F_t = F_t(\omega) = \exp \left(- \int_0^t c(s) dB_s + \frac{1}{2} \int_0^t c^2(s) ds \right).$$

Show that (3) can be written as:

$$d(F_t X_t) = F_t \cdot f(t, X_t)dt. \quad (4)$$

Proof. Here, let’s first derive dF_t using Itô formula with $dX_t = \frac{1}{2}c^2(t)dt - c(t)dB_t$:

$$dF_t = F_t \left(dX_t + \frac{1}{2}(dX_t)^2 \right) = F_t \left(\frac{1}{2}c^2(t)dt - c(t)dB_t \right) + \frac{1}{2}F_t c^2(t)dt = F_t(c^2(t)dt - c(t)dB_t).$$

Therefore, we have the product rule resulting in:

$$\begin{aligned} d(F_t X_t) &= F_t dX_t + X_t dF_t + dF_t dX_t \\ &= F_t(f(t, X_t)dt + c(t)X_t dB_t) + X_t F_t(c^2(t)dt - c(t)dB_t) \\ &\quad + F_t(c^2(t)dt - c(t)dB_t)dB_t(f(t, X_t)dt + c(t)X_t dB_t) \\ &= F_t f(t, X_t)dt, \end{aligned}$$

as desired. \square

(b) Now define:

$$Y_t(\omega) = F_t(\omega)X_t(\omega)$$

so that:

$$X_t = F_t^{-1}Y_t. \quad (5)$$

Deduce that equation (4) gets the form:

$$\frac{dY_t(\omega)}{dt} = F_t(\omega) \cdot f(t, F_t^{-1}(\omega)Y_t(\omega)), \quad Y_0 = x. \quad (6)$$

Note that this is just a *deterministic* differential equation in the function $t \mapsto Y_t(\omega)$, for each $\omega \in \Omega$. We can therefore solve (6) with ω as a parameter to find $Y_t(\omega)$ and then obtain $X_t(\omega)$ from (5).

Proof. Here, from part (a), we have:

$$d(F_t(\omega)X_t(\omega)) = F_t f(t, X_t)dt = F_t f(t, F_t^{-1}(\omega)X_t(\omega))dt,$$

which completes the proof when dividing both sides by dt . \square

(c) Apply this method to solve the stochastic differential equation:

$$dX_t = \frac{1}{X_t} dt + \alpha X_t dB_t, \quad X_0 = x > 0,$$

where α is constant.

Solution. Here, we have the integrating factor as:

$$F_t = \exp \left(- \int_0^t \alpha dB_s + \frac{1}{2} \int_0^t \alpha^2 ds \right) = \exp \left(-\alpha \int_0^t dB_s + \frac{\alpha^2}{2} \int_0^t ds \right) = \exp \left(-\alpha B_t + \frac{\alpha}{2} t \right).$$

Then, by (b), let $Y_t := F_t X_t$, we have that:

$$\frac{dY_t}{dt} = \exp \left(-\alpha B_t + \frac{\alpha}{2} t \right) \cdot \frac{1}{\exp \left(-\alpha B_t + \frac{\alpha}{2} t \right) Y_t} = Y_t.$$

Hence, this becomes a trivial ODE, that is:

$$Y_t dY_t = dt, \quad \text{and the solution is } Y_t = \sqrt{2t + Y_0^2}.$$

Therefore, we can deduce X_t as:

$$X_t = \boxed{\exp \left(\alpha B_t - \frac{\alpha}{2} t \right) \cdot \sqrt{2t + x^2}}.$$

□

(d) Apply the method to study the solutions of the stochastic differential equation:

$$dX_t = X_t^\gamma dt + \alpha X_t dB_t, \quad X_0 = x > 0,$$

where α and γ are constants.

For what values of γ do we get explosion?

Solution. Here, we still have the integrating factor as:

$$F_t = \exp \left(- \int_0^t \alpha dB_s + \frac{1}{2} \int_0^t \alpha^2 ds \right) = \exp \left(-\alpha \int_0^t dB_s + \frac{\alpha^2}{2} \int_0^t ds \right) = \exp \left(-\alpha B_t + \frac{\alpha}{2} t \right).$$

Then, by (b), let $Y_t := F_t X_t$, we have that:

$$\frac{dY_t}{dt} = \exp \left(-\alpha B_t + \frac{\alpha}{2} t \right) \left(\exp \left(-\alpha B_t + \frac{\alpha}{2} t \right) Y_t \right)^\gamma = \exp \left(\left(-\alpha B_t + \frac{\alpha}{2} t \right) (1 + \gamma) \right) Y_t^\gamma.$$

Again, this is still a separable ODE, and we have:

$$Y_t^{-\gamma} dY_t = \exp \left(\left(-\alpha B_t + \frac{\alpha}{2} t \right) (1 + \gamma) \right) dt.$$

However, we note have a closed-form solution, and the solution is:

$$Y_t = \begin{cases} \left(\int_0^t \exp \left(\left(-\alpha B_s + \frac{\alpha}{2} s \right) (1 + \gamma) \right) ds (1 - \gamma) \right)^{\gamma^{-1}} & \text{when } \gamma \neq 1 \\ \exp \left(\int_0^t \exp \left(\left(-\alpha B_s + \frac{\alpha}{2} s \right) \right) ds \right) & \text{when } \gamma = 1. \end{cases}$$

Hence, we have that:

$$X_t = \begin{cases} \exp(\alpha B_t - \frac{\alpha}{2}t) \left(\int_0^t \exp((-\alpha B_s + \frac{\alpha}{2}s)(1+\gamma)) ds (1-\gamma) \right)^{\gamma-1} & \text{when } \gamma \neq 1 \\ \exp(\alpha B_t - \frac{\alpha}{2}t) \exp \left(\int_0^t \exp((-\alpha B_s + \frac{\alpha}{2}s)) ds \right) & \text{when } \gamma = 1. \end{cases}$$

Note that the solution would explode when $\gamma > 1$. □

Problem V.6. (Exercise 5.17 on [Øksendal]). **The Gronwall inequality.**

Let $v(t)$ be a nonnegative function such that:

$$v(t) \leq C + A \int_0^t v(s) ds \text{ for } 0 \leq t \leq T$$

for some constants C, A , where $A \geq 0$. Prove that:

$$v(t) \leq C \exp(At) \text{ for } 0 \leq t \leq T.$$

Hint: We may assume $A \neq 0$. Define $w(t) = \int_0^t v(s) ds$. Then $w'(t) \leq C + Aw(t)$. Deduce that:

$$w(t) \leq \frac{C}{A} (\exp(At) - 1)$$

by considering $f(t) := w(t) \exp(-At)$.

Proof. Consider that $w(t) = \int_0^t v(s) ds$, so by using Leibniz rule, its derivative is:

$$w'(t) = v(t) \leq C + A \int_0^t v(s) ds = C + Aw(t).$$

Then, we consider $f(t) := w(t) \exp(-At)$, and we take its derivative using the product rule:

$$f'(t) = w'(t) \exp(-At) - Aw(t) \exp(-At) = \exp(-At)(w'(t) - Aw(t)) \leq C \exp(-At).$$

Again, by the Leibniz rule and the previous inequality, while noting $f(0) = 0$, we have:

$$f(t) = \int_0^t f'(s) ds \leq \int_0^t C \exp(-As) ds = -\frac{C}{A} (\exp(-At) - 1).$$

Recall that $\exp(-At)$ is always positive, we can divide both sides by it:

$$w(t) = \frac{f(t)}{\exp(-At)} \leq \frac{-\frac{C}{A} (\exp(-At) - 1)}{\exp(-At)} = \frac{C}{A} (\exp(At) - 1).$$

Thus, we can extend the conclusion to $v(t)$, in which:

$$v(t) \leq C + Aw(t) = C + C(\exp(At) - 1) = C \exp(At),$$

which completes the proof. □

Problem V.7. Let $X(t)$ solve the Langevin equation:

$$dX(t) = -\mu X(t)dt + \sigma dB_t$$

and suppose that X_0 is a $\mathcal{N}\left(0, \frac{\sigma^2}{2\mu}\right)$ random variable. Show that:

$$\mathbb{E}[X(s)X(t)] = \frac{\sigma^2}{2\mu} e^{-\mu|t-s|}, \quad t, s \geq 0.$$

Proof. Here, we first solve for the solution of Langevin equation using the integrating factor:

$$F(t) = \exp(\mu t), \quad \text{hence we have } dF(t) = \mu \exp(\mu t)dt.$$

Then, we have the product rule as:

$$\begin{aligned} d(F(t)X(t)) &= F(t)dX(t) + X(t)dF(t) + dF(t)dX(t) \\ &= \exp(\mu t)(-\mu X(t)dt + \sigma dB_t) + \mu \exp(\mu t)X(t)dt \\ &= \sigma \exp(\mu t)dB_t, \end{aligned}$$

and so the solution to the Langevin equation is:

$$F(t)X(t) = F(0)X(0) + \int_0^t \sigma \exp(\mu s)dB_s = X(0) + \sigma \int_0^t \exp(\mu s)dB_s,$$

and hence we have:

$$X(t) = \exp(-\mu t)X(0) + \sigma \int_0^t \exp(\mu(s-t))dB_s.$$

Then, we think about the expectation as:

$$\begin{aligned} \mathbb{E}[X(s)X(t)] &= \mathbb{E}\left[\left(\exp(-\mu t)X(0) + \sigma \int_0^t \exp(\mu(u-t))dB_u\right)\left(\exp(-\mu s)X(0) + \sigma \int_0^s \exp(\mu(u-s))dB_u\right)\right] \\ &= \exp(-\mu(t+s))\mathbb{E}[X^2(0)] + \exp(-\mu t)\sigma\mathbb{E}\left[X(0) \int_0^s \exp(\mu(u-s))dB_u\right] \\ &\quad + \exp(-\mu s)\sigma\mathbb{E}\left[X(0) \int_0^t \exp(\mu(u-t))dB_u\right] + \sigma^2\mathbb{E}\left[\int_0^t \exp(\mu(u-t))dB_u \int_0^s \exp(\mu(u-s))dB_u\right] \\ &= \exp(-\mu(t+s)) \cdot \frac{\sigma^2}{2\mu} + \exp(-\mu t)\sigma\mathbb{E}[X(0)]\mathbb{E}\left[\int_0^s \exp(\mu(u-s))dB_u\right] \\ &\quad + \exp(-\mu s)\sigma\mathbb{E}[X(0)]\mathbb{E}\left[\int_0^t \exp(\mu(u-t))dB_u\right] + \sigma^2\mathbb{E}\left[\int_0^t \exp(\mu(u-t))dB_u \int_0^s \exp(\mu(u-s))dB_u\right] \\ &= \exp(-\mu(t+s)) \cdot \frac{\sigma^2}{2\mu} + \sigma^2\mathbb{E}\left[\int_0^t \exp(\mu(u-t))dB_u \int_0^s \exp(\mu(u-s))dB_u\right]. \end{aligned}$$

Now, the main goal is to evaluate the last integral. Without loss of generality, we assume that $0 \leq t \leq s$:

$$\begin{aligned}
& \mathbb{E} \left[\int_0^t \exp(\mu(u-t)) dB_u \int_0^s \exp(\mu(u-s)) dB_u \right] \\
&= \mathbb{E} \left[\int_0^t \int_0^s \exp(\mu(u-t)) \exp(\mu(v-s)) dB_v dB_u \right] \\
&= \int_{\Omega} \int_{[0,t]} \int_{[0,s]} \exp(\mu(u+v) - (t+s)) dB_v(\omega) dB_u(\omega) d\omega \\
&= \mathbb{E} \left[\int_0^t \exp(2\mu v - \mu(t+s)) dB_v(\omega) + \int_t^s dB_u(\omega) \right] \\
&= \exp(-\mu(t+s)) \int_0^t \exp(2\mu v) dv = \frac{1}{2\mu} \exp(-\mu(t+s)) \left[\exp(2\mu v) \right]_{v=0}^{v=t} \\
&= \frac{1}{2\mu} \exp(-\mu(t+s)) (\exp(2\mu t) - 1).
\end{aligned}$$

When plugged in together, we have:

$$\begin{aligned}
\mathbb{E}[X(s)X(t)] &= \exp(-\mu(t+s)) \cdot \frac{\sigma^2}{2\mu} + \frac{\sigma^2}{2\mu} \exp(-\mu(t+s)) (\exp(2\mu t) - 1) \\
&= \frac{\sigma^2}{2\mu} \exp(-\mu(s-t)).
\end{aligned}$$

Note that since $s \geq t$ is by our assumption, and it would otherwise be $t-s$, and we can conclude by $|t-s|$, which result in:

$$\mathbb{E}[X(s)X(t)] = \frac{\sigma^2}{2\mu} \exp(-\mu|t-s|),$$

as desired. \square

Problem V.8. Prove that if $p \geq 2$ and $X \in \mathcal{V}([0, T])$, then:

$$\mathbb{E} \left[\sup_{t \in [0, T]} \left| \int_0^t X_s dB_s \right|^p \right] \leq C_p T^{\frac{p-2}{2}} \mathbb{E} \left[\int_0^T |X_s|^p ds \right]$$

for some constant $C_p > 0$ depending only on p .

Proof. First of all, we have Itô isometry that:

$$\mathbb{E} \left[\left| \int_0^t X_s dB_s \right|^2 \right] = \mathbb{E} \left[\int_0^t |X_s|^2 ds \right].$$

Given the absolute value, we have non-negativity, and hence:

$$\mathbb{E} \left[\sup_{t \in [0, T]} \left| \int_0^t X_s dB_s \right|^2 \right] \leq \mathbb{E} \left[\int_0^T |X_s|^2 ds \right].$$

This part is partially adapted from [external source](#). Here, we consider the function φ :

$$\varphi(x) = |x|^p.$$

Here, we have:

$$\varphi'(x) = \operatorname{sgn}(x)p|x|^{p-1}, \text{ and } \varphi''(x) = p(p-1)|x|^{p-2} \text{ a.a.}$$

Note that $\int_0^t X_s dB_s =: M$ is a martingale, and we denote its supremum by M^* , and by Martingale representation theorem, it can be written as:

$$M^p = \int_0^T \operatorname{sgn}(M_s) p|M_s|^{p-1} dM_s + \frac{1}{2} \int_0^T p(p-1)|x|^{p-2} (dM_s)^2.$$

In particular, the expectation is:

$$\mathbb{E}[|M|^p] \leq \frac{p(p-1)}{2} \mathbb{E}[|M^*|^{p-2} |M|^2].$$

Then, to utilize the Hölder inequality with $q = \frac{p}{p-2}$, we have:

$$\mathbb{E}[|M^*|^{p-2} |M|^2] \leq \mathbb{E}[|M^*|^p]^{\frac{p-2}{p}} \mathbb{E}[|M|^p]^{\frac{p}{2}} \cdot T^{\frac{p-2}{p} \cdot \frac{p}{2}}$$

Then, we have:

$$\mathbb{E}[|M^*|^p] \leq C_p T^{\frac{p-2}{2}} \mathbb{E}[|X_s|^p].$$

□

VI Problem Set 6

Problem VI.1. Let us consider the one-dimensional SDE:

$$dX_t = \left(\sqrt{1 + X_t^2} + \frac{1}{2}X_t \right) dt + \sqrt{1 + X_t^2} dB_t, \quad X_0 = x \in \mathbb{R}.$$

(a) Does this equation admit strong solutions?

Solution. Here, this equation admits strong solution. First, we denote:

$$b(t, x) = \sqrt{1 + x^2} + \frac{1}{2}x \quad \text{and} \quad \sigma(t, x) = \sqrt{1 + x^2}.$$

We can verify this by showing that it satisfies the existence and uniqueness theorem for SDEs.

- **Linear growth:** We note that:

$$\begin{aligned} |b(t, x)| + |\sigma(t, x)| &= \left| \sqrt{1 + x^2} + \frac{1}{2}x \right| + \left| \sqrt{1 + x^2} \right| \\ &\leq \frac{1}{2}|x| + 2\left| \sqrt{1 + x^2} \right| \leq \frac{1}{2}(1 + |x|) + 2(1 + |x|) = \frac{5}{2}(1 + |x|). \end{aligned}$$

- **Lipschitz condition:** We note that the derivative of $\sigma(t, x)$ is:

$$\left| \frac{d\sigma}{dx}(t, x) \right| = \frac{|x|}{\sqrt{1 + x^2}} < \frac{|x|}{\sqrt{x^2}} = 1.$$

Hence, $\sigma(t, x)$ must be Lipschitz, since if we assume that $|\sigma(t, x) - \sigma(t, y)| > |x - y|$, then by the Cauchy's mean value theorem, we have:

$$\frac{|\sigma(t, x) - \sigma(t, y)|}{|x - y|} > 1 \text{ which implies that there exists some } \xi \in [x, y] \text{ such that } \frac{d\sigma}{dx}(t, \xi) > 1,$$

which is a contradiction, so we have:

$$|b(t, x) - b(t, y)| + |\sigma(t, x) - \sigma(t, y)| \leq 2|\sigma(t, x) - \sigma(t, y)| + \frac{1}{2}|x - y| \leq \frac{5}{2}|x - y|.$$

- **Initial condition:** Note that $X_0 = x \in \mathbb{R}$ is a constant, which is independent of the Brownian motion, and $\mathbb{E}[|x|^2] = x^2 < \infty$.

Therefore, the equation satisfies the **existence and uniqueness theorem**. Hence, the equation admits strong solution. \square

(b) Let $Y_t = \log \left(\sqrt{1 + X_t^2} + X_t \right)$. Find the SDE Y_t satisfied.

Solution. Here, we want to use the Itô formula, here we consider the function:

$$g(x) = \log \left(\sqrt{1 + x^2} + x \right).$$

Here, we take the partial derivatives with respect to x for $g(x)$, where we note that:

$$\begin{aligned} g'(x) &= \frac{\frac{x}{\sqrt{1+x^2}} + 1}{\sqrt{1+x^2} + x} = \frac{\frac{x}{\sqrt{1+x^2}} + 1}{\sqrt{1+x^2} + x} \cdot \frac{\sqrt{1+x^2} - x}{\sqrt{1+x^2} - x} \\ &= \frac{x + \sqrt{1+x^2} - \frac{x^2}{\sqrt{1+x^2}} - x}{1 + x^2 - x^2} = \sqrt{1+x^2} - \frac{x^2}{\sqrt{1+x^2}} = (1+x^2)^{-\frac{1}{2}}, \\ g''(x) &= -\frac{1}{2}(1+x^2)^{-\frac{3}{2}} \cdot (2x) = -x(1-x^2)^{-\frac{3}{2}}. \end{aligned}$$

Then, we have:

$$\begin{aligned} dY_t &= \frac{\partial}{\partial t}g(X_t)dt + \frac{\partial}{\partial x}g(X_t)dX_t + \frac{1}{2}\frac{\partial^2}{\partial x^2}g(X_t)(dX_t)^2 \\ &= \frac{1}{\sqrt{1+X_t^2}}dX_t - \frac{1}{2}\frac{X_t}{(1+X_t^2)^{\frac{3}{2}}}(dX_t)^2 \\ &= \frac{1}{\sqrt{1+X_t^2}} \left[\left(\sqrt{1+X_t^2} + \frac{1}{2}X_t \right) dt + \sqrt{1+X_t^2}dB_t \right] \\ &\quad - \frac{1}{2}\frac{X_t}{(1+X_t^2)^{\frac{3}{2}}} \left[\left(\sqrt{1+X_t^2} + \frac{1}{2}X_t \right) dt + \sqrt{1+X_t^2}dB_t \right]^2 \\ &= dt + \frac{X_t}{2\sqrt{1+X_t^2}}dt + dB_t - \frac{1}{2}\frac{X_t}{(1+X_t^2)^{\frac{3}{2}}} \left(1+X_t^2 \right) dt \\ &= dt + \frac{1}{2}\frac{X_t}{\sqrt{1+X_t^2}}dt + dB_t - \frac{1}{2}\frac{X_t}{\sqrt{1+X_t^2}}dt = dt + dB_t. \end{aligned}$$

Hence, Y_t satisfies that $dY_t = dt + dB_t$. □

(c) Deduce an explicit solution for X_t .

Solution. To find the solution, we have:

$$Y_t = Y_0 + \int_0^t ds + \int_0^t dB_s = Y_0 + t + B_t.$$

Also, we note that:

$$Y_0 = \log(\sqrt{1+x^2} + x),$$

so we have:

$$Y_t = \log(\sqrt{1+x^2} + x) + t + B_t.$$

Then, we can write Y_t as function of X_t :

$$\log \left(\sqrt{1+X_t^2} + X_t \right) = \log(\sqrt{1+x^2} + x) + t + B_t.$$

By taking the exponential on both sides, we have:

$$\sqrt{1+X_t^2} + X_t = e^t e^{B_t} + (\sqrt{1+x^2} + x),$$

and by some arithmetic deductions, we get to that:

$$X_t = \boxed{\frac{\left(e^t e^{B_t} + (\sqrt{1+x^2} + x)\right)^2 - 1}{2\left(e^t e^{B_t} + (\sqrt{1+x^2} + x)\right)}}.$$

↓

Problem VI.2. Let us consider the one-dimensional SDE:

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad X_0 = x \in \mathbb{R}.$$

Assume that b, σ satisfies the Lipschitz condition and linear growth condition. Moreover, assume σ is continuous differentiable with $|\sigma'(x)| \leq C < \infty$ and $\sigma(x) \geq \delta > 0$ for all $x \in \mathbb{R}$.

(a) Consider $f(x) = \int_0^x \frac{1}{\sigma(y)} dy$ and the process $Y_t = f(X_t)$. Find the SDE Y_t satisfies.

Solution. Here, by the **Leibniz rule**, we have that:

$$\frac{\partial f}{\partial x} = \frac{1}{\sigma(x)} \quad \text{and} \quad \frac{\partial^2 f}{\partial x^2} = -\frac{\sigma'(x)}{(\sigma(x))^2}.$$

Then, we use Itô formula to derive that:

$$\begin{aligned} dY_t &= \frac{\partial}{\partial t} f(X_t)dt + \frac{\partial}{\partial x} f(X_t)dX_t + \frac{1}{2} \frac{\partial^2}{\partial x^2} f(X_t)(dX_t)^2 \\ &= \frac{1}{\sigma(X_t)} dX_t - \frac{1}{2} \frac{\sigma'(x)}{(\sigma(x))^2} (dX_t)^2 \\ &= \frac{1}{\sigma(X_t)} [b(X_t)dt + \sigma(X_t)dB_t] - \frac{1}{2} \frac{\sigma'(x)}{(\sigma(x))^2} [b(X_t)dt + \sigma(X_t)dB_t]^2 \\ &= \frac{b(X_t)}{\sigma(X_t)} dt + dB_t - \frac{1}{2} \frac{\sigma'(X_t)}{(\sigma(X_t))^2} (\sigma(X_t))^2 dt = \left(\frac{b(X_t)}{\sigma(X_t)} - \frac{1}{2} \sigma'(X_t) \right) dt + dB_t. \end{aligned}$$

Hence, the SDE that Y_t satisfies is:

$$\boxed{dY_t = \left(\frac{b(X_t)}{\sigma(X_t)} - \frac{1}{2} \sigma'(X_t) \right) dt + dB_t}.$$

↓

(b) Prove that, under the assumption in (a), the filtration $\mathcal{H}_t = \sigma(\{X_s\}_{0 \leq s \leq t})$ coincides with the natural filtration $\mathcal{F}_t = \sigma(\{B_s\}_{0 \leq s \leq t})$.

Proof. Here, we want to show the two inclusions for the filtrations.

- ($\mathcal{H}_t \subset \mathcal{F}_t$:) Note that by definition:

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad X_0 = x \in \mathbb{R},$$

where b, σ satisfies the Lipschitz condition and linear growth condition. Also we have $X_0 = x \in \mathbb{R}$ independent of B_t in which $\mathbb{E}[|x|^2] = x^2 < \infty$. Hence, the SDE satisfies the existence and uniqueness theorem, and so X_t is adapted to $\sigma(\{B_s\}_{0 \leq s \leq t})$, and hence $\mathcal{H}_t \subset \mathcal{F}_t$.

- ($\mathcal{F}_t \subset \mathcal{H}_t$:) Here, recall from part (a), we have:

$$dB_t = \left(\frac{b(X_t)}{\sigma(X_t)} - \frac{1}{2}\sigma'(X_t) \right) dt + dY_t.$$

Clearly, 1 satisfies the linear growth and Lipschitz condition, and we need to verify the first part, in which we denote:

$$\varphi(x) = \frac{b(x)}{\sigma(x)} - \frac{1}{2}\sigma'(x).$$

For the **linear growth** condition, we have that:

$$|\varphi(x)| \leq \frac{|b(x)|}{|\sigma(x)|} + \frac{1}{2}|\sigma'(x)| \leq \frac{B(1+|x|)}{\delta} + \frac{1}{2}C \leq \left(\frac{B}{\delta} + \frac{C}{2} \right) (1+|x|).$$

Note that we do **not** need Lipschitz condition, since we just need existence of a strong solution so that \mathcal{F}_t is $\mathcal{M}_t := \sigma(\{Y_s\}_{t \leq s})$ -adapted.

Also, note that f is monotonic, so it is injective, hence admitting a left-inverse f^{-1} . Note that σ is measurable, f is also measurable, so does the left-inverse f^{-1} . Hence, $\mathcal{M}_t = \mathcal{H}_t$, and so $\mathcal{F}_t \subset \mathcal{H}_t$.

With both inclusions, we have $\mathcal{H}_t = \mathcal{F}_t$, as desired. □

VII Problem Set 7

Problem VII.1. (Exercise 7.1 on [Øksendal]). Find the generator of the following Itô diffusions:

(a) $dX_t = \mu X_t dt + \sigma dB_t$ (The Ornstein-Uhlenbeck process), where $B_t \in \mathbb{R}$, and μ, σ are constants.

Solution. Here, let $f \in C_0^2(\mathbb{R})$ be arbitrary, and we write the process as:

$$dX_t = \underbrace{\mu X_t}_{b(X_t)} dt + \underbrace{\sigma}_{\sigma(X_t)} dB_t,$$

and we have the infinitesimal generator as:

$$Af(x) = \mu x \frac{\partial f}{\partial x} + \frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x^2} = \boxed{\mu x f'(x) + \frac{1}{2} \sigma^2 f''(x)}.$$

(b) $dX_t = r X_t dt + \alpha X_t dB_t$ (The geometric Brownian motion), where $B_t \in \mathbb{R}$, and r, α are constants.

Solution. Again, let $f \in C_0^2(\mathbb{R})$ be arbitrary, and we write the process as:

$$dX_t = \underbrace{r X_t}_{b(X_t)} dt + \underbrace{\alpha X_t}_{\sigma(X_t)} dB_t,$$

and we have the infinitesimal generator as:

$$Af(x) = r x \frac{\partial f}{\partial x} + \frac{1}{2} (\alpha x)^2 \frac{\partial^2 f}{\partial x^2} = \boxed{r x f'(x) + \frac{1}{2} \alpha^2 x^2 f''(x)}.$$

(c) $dY_t = r dt + \alpha Y_t dB_t$, where $B_t \in \mathbb{R}$, and r, α are constants.

Solution. Once again, let $f \in C_0^2(\mathbb{R})$ be arbitrary, and we write the process as:

$$dY_t = \underbrace{r}_{b(Y_t)} dt + \underbrace{\alpha Y_t}_{\sigma(Y_t)} dB_t,$$

and we have the infinitesimal generator as:

$$Af(x) = r \frac{\partial f}{\partial x} + \frac{1}{2} (\alpha x)^2 \frac{\partial^2 f}{\partial x^2} = \boxed{r f'(x) + \frac{1}{2} \alpha^2 x^2 f''(x)}.$$

(d) $dY_t = \begin{pmatrix} dt \\ dX_t \end{pmatrix}$, where X_t is as in (a).

Solution. While again, let $f \in C_0^2(\mathbb{R}^2)$ be arbitrary, and we write the process as:

$$dY_t = \begin{pmatrix} dt \\ \mu X_t dt + \sigma dB_t \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \\ \mu X_t \end{pmatrix}}_{b(X_t)} dt + \underbrace{\begin{pmatrix} 0 \\ \sigma \end{pmatrix}}_{\sigma(X_t)} dB_t,$$

and we have the infinitesimal generator as:

$$Af(x_1, x_2) = \boxed{\frac{\partial f}{\partial x_1} + \mu x_2 \frac{\partial f}{\partial x_2} + \frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x_2^2}}.$$

□

(e) $\begin{pmatrix} dX_1 \\ dX_2 \end{pmatrix} = \begin{pmatrix} 1 \\ X_2 \end{pmatrix} dt + \begin{pmatrix} 0 \\ e^{X_1} \end{pmatrix} dB_t$, where $B_t \in \mathbb{R}$.

Solution. Even again, let $f \in C_0^2(\mathbb{R}^2)$ be arbitrary, and we write the process as:

$$\begin{pmatrix} dX_1 \\ dX_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \\ X_2 \end{pmatrix}}_{b(X_1, X_2)} dt + \underbrace{\begin{pmatrix} 0 \\ e^{X_1} \end{pmatrix}}_{\sigma(X_1, X_2)} dB_t,$$

and we have the infinitesimal generator as:

$$Af(x_1, x_2) = \boxed{\frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} + \frac{1}{2} e^{2x_1} \frac{\partial^2 f}{\partial x_2^2}}.$$

□

Problem VII.2. (Exercise 7.2 on [Øksendal]). Find an Itô diffusion (i.e., write down the stochastic differential equation for it) whose generator is the following:

(a) $Af(x) = f'(x) + f''(x); f \in C_0^2(\mathbb{R})$.

Solution. Here, we reversely construct that:

$$dX_t = dt + \sqrt{2} dB_t.$$

□

(b) $Af(t, x) = \frac{\partial f}{\partial t} + cx \frac{\partial f}{\partial x} + \frac{1}{2} \alpha^2 x^2 \frac{\partial^2 f}{\partial x^2}; f \in C_0^2(\mathbb{R}^2)$, where c, α are constants.

Solution. Again, we reversely construct that:

$$dX_t = \boxed{\begin{pmatrix} 1 \\ cX_t^{(2)} \end{pmatrix} dt + \begin{pmatrix} 0 \\ \alpha X_t^{(2)} \end{pmatrix} dB_t}.$$

□

$$(c) \quad Af(x_1, x_2) = 2x_2 \frac{\partial f}{\partial x_1} + \log(1 + x_1^2 + x_2^2) \frac{\partial f}{\partial x_2} + \frac{1}{2}(1 + x_1^2) \frac{\partial^2 f}{\partial x_1^2} + x_1 \frac{\partial^2 f}{\partial x_1 \partial x_2} + \frac{1}{2} \cdot \frac{\partial^2 f}{\partial x_2^2}, \quad f \in C_0^2(\mathbb{R}^2).$$

Solution. Once again, we reversely construct the $\sigma\sigma^\top$ matrix as:

$$\sigma\sigma^\top = \begin{pmatrix} 1 + x_1^2 & x_1 \\ x_1 & 1 \end{pmatrix}.$$

Note that $\sqrt{1 + x_1^2} \cdot \sqrt{1}$ is not the same as the diagonals, so σ must be a 2-by-2 matrix.

Suppose $\sigma = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, then we have:

$$\sigma\sigma^\top = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}$$

and we have a candidate of σ as:

$$\sigma = \begin{pmatrix} 1 & x_1 \\ 0 & 1 \end{pmatrix}$$

Hence, we have:

$$dX_t = \left(\begin{pmatrix} 2X_t^{(2)} \\ \log \left(1 + X_t^{(1)2} + X_t^{(2)2} \right) \end{pmatrix} dt + \begin{pmatrix} 1 & X_1 \\ 0 & 1 \end{pmatrix} dB_t \right).$$

□

VIII Problem Set 8

Problem VIII.1. (Exercise 7.7 on [Øksendal]). Let B_t be Brownian motion on \mathbb{R}^n starting at $x \in \mathbb{R}^n$ and let $D \subset \mathbb{R}^n$ be an open ball centered at x .

(a) Prove that the harmonic measure μ_D^x of B_t is rotation invariant (about x) on the sphere ∂D . Conclude that μ_D^x coincides with normalized surface measure σ on ∂D .

Proof. Without loss of generality, we suppose $x = 0$, since the harmonic measure and Brownian motion is translational invariant.

First, we want to show that the Brownian motion is invariant with rotations. Suppose $U \in \mathbb{R}^{n \times n}$ such that $UU^\top = \text{Id}$. Hence, we have $\det U = 1$, and so when we have the change of variable $p \mapsto U \cdot p$, the probability measure is the same, so the rotation of a Brownian motion is still a Brownian motion.

Now, as we consider the definition of the harmonic measure of some $F \in \partial D$, we have that:

$$\mu_D^0(F) := Q^0[B_{\tau_D} \in F],$$

and consider a rotation centered at 0 as U , we then have:

$$\mu_D^0(U \cdot F) := Q^0[B_{\tau_D} \in U \cdot F] = Q^0[U \cdot B_{\tau_D} \in F] = Q^0[B_{\tau_D} \in F] = \mu_D^0(F),$$

as desired. Moreover, consider that the harmonic measure μ_D^x of B_t is rotational invariant about ∂D , for any point $d, d' \in \partial D$, we have that $\mu_D^x(d) = \mu_D^x(d')$ so the measure is uniformly distributed on the surface, and $\mu_D(\partial D) = 1$. Hence, it coincides with the normalized surface measure ω on ∂D . \square

(b) Let ϕ be a bounded measurable function on a bounded open set $W \subset \mathbb{R}^n$ and define:

$$u(x) = \mathbb{E}^x[\phi(B_{\tau_W})] \quad \text{for } x \in W.$$

Prove that u satisfies the classical mean value property:

$$u(x) = \int_{\partial D} u(y) d\sigma(y) \tag{7}$$

for all balls D centered at x with $\overline{D} \subset W$.

Proof. Here, we have $\phi \in L^1(W)$, so we have that:

$$u(x) = \int_{\partial D} u(y) d\mu_D^x(y) = \int_{\partial D} u(y) d\sigma(y),$$

since μ_D^x coincides with normalized surface measure σ . \square

(c) Let W be as in (b) and let $w : W \rightarrow \mathbb{R}$ be *harmonic* in W , i.e.:

$$\Delta w := \sum_{i=1}^n \frac{\partial^2 w}{\partial x_i^2} = 0 \quad \text{in } W.$$

Prove that w satisfies the classical mean value property (7).

Proof. Here, recall Green's formula for Harmonic PDE, we set the problem as:

$$\begin{cases} \Delta w = 0, & \text{in } W, \\ w(x) = g(x), & \text{on } \partial W, \end{cases}$$

where we assume that $g(x)$ is bounded and measurable function on W .

Then, we have the model that $\mathbb{E}[g(B_t^x(\omega))] = u(x)$, and naturally by (b), we have:

$$w(x) = \int_{\partial D} w(y) d\sigma(y).$$

□

Problem VIII.2. (Exercise 7.10 on [Øksendal]). Let X_t be the geometric Brownian motion:

$$dX_t = rX_t dt + \alpha X_t dB_t.$$

Find $\mathbb{E}^x[X_T | \mathcal{F}_t]$ for $t \leq T$ by different approaches.

(a) Using the Markov property.

Solution. Here, we use the **Markov property** so that:

$$\begin{aligned} \mathbb{E}^x[X_{t+(T-t)} | \mathcal{F}_t] &= \mathbb{E}^{X_t}[X_{T-t}] = \mathbb{E}[X_t] \cdot \mathbb{E}\left[\exp\left(\left(r - \frac{\alpha^2}{2}\right)t + \alpha B_t\right)\right] \\ &= X_t \exp(r(T-t)) = x \exp(rt) \exp(r(T-t)) = \boxed{x \exp(rt)}. \end{aligned}$$

□

(b) Writing $X_t = xe^{rt} M_t$, where:

$$M_t = \exp\left(\alpha B_t - \frac{1}{2}\alpha^2 t\right) \quad \text{is a martingale.}$$

Solution. Here, we can write the expectation as:

$$\begin{aligned} \mathbb{E}^x[X_T | \mathcal{F}_t] &= \mathbb{E}^x[xe^{rT} M_T | \mathcal{F}_t] = xe^{rT} \mathbb{E}^x[M_T | \mathcal{F}_t] \\ &= x \exp(rt) \cdot M_t = \exp(r(T-t)) X_t = \boxed{x \exp(rt)}. \end{aligned}$$

□

Problem VIII.3. (Exercise 8.1 on [Øksendal]). Let Δ denote the Laplace operator on \mathbb{R}^n .

(a) Write down, in terms of Brownian motion, a bounded solution g of the Cauchy problem:

$$\begin{cases} \frac{\partial g(t, x)}{\partial t} - \frac{1}{2} \Delta_x g(t, x) = 0, & \text{for } t > 0, x \in \mathbb{R}^n, \\ g(0, x) = \phi(x), \end{cases}$$

where $\phi \in C_0^2$ is given. (From general theory it is known that the solution is unique.)

Solution. Here, since $\phi \in C_0^2$, we know that ϕ is lower-bounded. Then, we consider the Itô diffusion:

$$dX_t = 0dt + \text{Id } dB_t = dB_t.$$

Then, we have the generator of the Itô diffusion as:

$$Af = \frac{1}{2} \sum_{i=1}^n \frac{\partial f}{\partial x_i^2} = \Delta_x f \quad \text{for } f \in C^2(\mathbb{R}^n).$$

Hence, we can use **Feynman-Kac Formula** that:

$$g(t, x) = \mathbb{E}^x \left[\exp \left(- \int_0^t 0ds \right) \phi(X_t) \right] = \boxed{\mathbb{E}^x[\phi(B_t)]}.$$

□

(b) Let $\psi \in C_b(\mathbb{R}^n)$ and $\alpha > 0$. Find a bounded solution u of the equation:

$$\left(\alpha - \frac{1}{2} \Delta \right) u = \psi \quad \text{in } \mathbb{R}^n.$$

Prove that the solution is unique.

Proof. Here, we note that we want to create the same Itô diffusion:

$$dX_t = 0dt + \text{Id } dB_t = dB_t.$$

Then, we have the generator of the Itô diffusion as:

$$Af = \frac{1}{2} \sum_{i=1}^n \frac{\partial f}{\partial x_i^2} = \Delta_x f \quad \text{for } f \in C^2(\mathbb{R}^n).$$

Then, we can use **Feynman-Kac Formula** that:

$$u(t, x) = \mathbb{E}^x \left[\exp \left(- \int_0^t \psi(X_s) ds \right) \right] = \mathbb{E}^x \left[\exp \left(- \int_0^t \psi(B_s) ds \right) \right],$$

and the solution is unique for a given initial condition by Feynman-Kac. □

Problem VIII.4. (Exercise 8.7 on [Øksendal]). Let X_t be a sum of Itô integrals of the form:

$$X_t = \sum_{k=1}^n \int_0^t v_k(s, \omega) dB_k(s),$$

where (B_1, \dots, B_n) is n -dimensional Brownian motion. Assume that:

$$\beta_t := \int_0^t \sum_{k=1}^n v_k^2(s, \omega) ds \rightarrow \infty \quad \text{as } t \rightarrow \infty \text{ a.s.}$$

Prove that:

$$\limsup_{t \rightarrow \infty} \frac{X_t}{\sqrt{2\beta_t \log \log \beta_t}} = 1 \quad \text{a.s.}$$

Hint: Use the law of iterated logarithm.

Proof. Here, we consider the differential form:

$$dX_t = \sum_{k=1}^n v_k(s, \omega) dB_k(t).$$

Then, we note that this is a 1-dimensional Brownian motion, and the time change is:

$$\beta_t = \int_0^t \sum_{k=1}^n v_k^2(s, \omega) ds.$$

With this time change, we can consider:

$$\limsup_{t \rightarrow \infty} \frac{X_t}{\sqrt{2\beta_t \log \log \beta_t}} = \limsup_{t \rightarrow \infty} \frac{B_t}{\sqrt{2t \log \log t}} = 1$$

almost surely by the law of iterated logarithm. \square

Problem VIII.5. Find a solution to the following PDE:

(a)

$$\begin{cases} \frac{\partial}{\partial t} u(t, x) + bx \frac{\partial}{\partial x} u(t, x) + \frac{\sigma^2}{2} \frac{\partial^2}{\partial x^2} u(t, x) = 0, & x \in \mathbb{R}, t \in (0, T); \\ u(T, x) = x, & x \in \mathbb{R}. \end{cases}$$

Solution. Here, we need to think about the process for the SDE, as follows:

$$dX_t = bX_t dt + \sigma dB_t,$$

so we have the Itô generator as:

$$Af = bx \frac{\partial f}{\partial x} + \frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x^2}.$$

However, note that x is not lower bounded, so we cannot use the **Feynman-Kac** backward equation, directly, but we can think of a mollifier for $\epsilon < 0$ that:

$$\begin{cases} \frac{\partial}{\partial t} u^{(\epsilon)}(t, x) + bx \frac{\partial}{\partial x} u^{(\epsilon)}(t, x) + \frac{\sigma^2}{2} \frac{\partial^2}{\partial x^2} u^{(\epsilon)}(t, x) = 0, & x \in \mathbb{R}, t \in (0, T); \\ u^{(\epsilon)}(T, x) = \max\{\epsilon, x\}, & x \in \mathbb{R}. \end{cases}$$

Here, we consider the solution as:

$$\mathbb{E}^x [\max\{\epsilon, X_T\}] \rightarrow \boxed{\mathbb{E}^x[X_T]},$$

where X_t is the solution to the OU process. \square

(b) What if the boundary condition was replaced by $u(T, x) = x^2$.

Solution. Then, we use the **backward Feynman-Kac Formula**, since x^2 is bounded below, so that:

$$u(t, x) = \boxed{\mathbb{E}^x [X_T^2]},$$

where X_t is the solution to the OU process. \square

Problem VIII.6. (Exercise 8.11 on [Øksendal]).

(a) Let $Y(t) = t + B(t)$ for $t \geq 0$. For each $T > 0$, find a probability measure Q_T on \mathcal{F}_T such that $Q_T \sim \mathbb{P}$ and $\{Y(t)\}_{t \leq T}$ is Brownian motion with respect to Q_T . Use:

$$M_T d\mathbb{P} = M_t d\mathbb{P} \quad \text{on } \mathcal{F}_t^{(n)}; t \leq T \text{ when } M \text{ is a martingale}$$

to prove that there exists a probability measure Q on \mathcal{F}_∞ such that:

$$Q|_{\mathcal{F}_T} = Q_T \quad \text{for all } T > 0.$$

Solution. Here, we write the expression as:

$$dY(t) = \underbrace{1}_{a(t, \omega)} dt + dB(t),$$

and hence we have the martingale:

$$M_t = \exp \left(- \int_0^t dB_s - \frac{1}{2} \int_0^t ds \right) = \exp \left(-B(t) - \frac{1}{2} t \right),$$

and hence by **Girsanov theorem I**, we have:

$$d\mathbb{Q}(\omega) = \exp\left(-B(T) - \frac{1}{2}T\right) d\mathbb{P}(\omega),$$

while $Y(t)$ is a Brownian motion with respect to \mathbb{Q}_T for $0 \leq t \leq T$.

Note that M_t is martingale, hence we can consider:

$$\mathbb{Q}_t |_{\mathcal{F}_s} = \mathbb{Q}_s \text{ for } t \geq s.$$

Hence, we can construct the measure from \mathbb{Q}_t for a $t \geq 0$ in to \mathbb{Q} , as desired. \square

(b) Show that:

$$\mathbb{P}\left(\lim_{t \rightarrow \infty} Y(t) = \infty\right) = 1,$$

while:

$$\mathbb{Q}\left(\lim_{t \rightarrow \infty} Y(t) = \infty\right) = 0.$$

Why does not this contradict the Girsanov theorem?

Solution. Recall the **Law of Iterated Log**, we have:

$$\begin{aligned} \limsup_{t \rightarrow \infty} \frac{B_t}{\sqrt{2t \log \log t}} &= 1, \\ \liminf_{t \rightarrow \infty} \frac{B_t}{\sqrt{2t \log \log t}} &= 0. \end{aligned}$$

Now, consider the probability measure of \mathbb{P} , we have:

$$\lim_{t \rightarrow \infty} \frac{B_t + t}{\sqrt{2t \log \log t}} \leq \lim_{t \rightarrow \infty} \frac{t}{\sqrt{2t \log \log t}} \rightarrow \infty.$$

However, for the probability measure \mathbb{Q} , we have that:

$$\lim_{t \rightarrow \infty} \frac{B_t}{\sqrt{2t \log \log t}} \text{ not to } \infty \text{ a.s.}$$

Hence, we note that \mathbb{P} and \mathbb{Q} does not correspond, this is because \mathbb{Q} is constructed from $T \rightarrow \infty$, but is does not align to the case for concrete T values. \square

Problem VIII.7. (Exercise 8.12 on [Øksendal]). Let:

$$dY(t) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} dt + \begin{pmatrix} 1 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} dB_1(t) \\ dB_2(t) \end{pmatrix}, \quad t \leq T.$$

Find a probability measure

Q on $\mathcal{F}_T^{(2)}$ such that $Q \sim P$ and such that:

$$\tilde{B}(t) := \begin{pmatrix} -3t \\ t \end{pmatrix} + \begin{pmatrix} B_1(t) \\ B_2(t) \end{pmatrix}$$

is Brownian motion with respect to Q and:

$$dY(t) = \begin{pmatrix} 1 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} d\tilde{B}_1(t) \\ d\tilde{B}_2(t) \end{pmatrix}.$$

Solution. Here, we think about:

$$\tilde{B}(t) = \begin{pmatrix} a(t) + B_1(t) \\ b(t) + B_2(t) \end{pmatrix},$$

so that we have:

$$\begin{pmatrix} 1 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

and hence $b = 1$ and $a = -3$.

Then, we will think about **Girsanov theorem I**, so we have:

$$M_t = \exp \left(- \int_0^t \begin{pmatrix} -3 \\ 1 \end{pmatrix} \begin{pmatrix} dB_1(s) \\ dB_2(s) \end{pmatrix} - \frac{1}{2} \int_0^t \begin{pmatrix} -3 \\ 1 \end{pmatrix} \begin{pmatrix} -3 & 1 \end{pmatrix} ds \right) = \exp(3B_1(t) - B_2(t) - 5t),$$

which leads to the change in probability measure as:

$$dQ(\omega) = \boxed{\exp(3B_1(T)(\omega) - B_2(T)(\omega) - 5T) dP(\omega)}.$$

□

Problem VIII.8. Let (Ω, \mathcal{F}, P) be a complete probability space and $B = \{B_t\}_{t \geq 0}$ be a Brownian motion with respect to filtration $\{F_t\}_{t \geq 0}$.

(a) Let $b : \mathbb{R} \rightarrow \mathbb{R}$ be a bounded continuously differentiable function and x a fixed real number. Determine a new probability Q in (Ω, \mathcal{F}) , the process $W_t = B_t - \int_0^t b(B_s + x) ds$ is a Brownian motion when $0 \leq t \leq T$. Find the SDE $Y_t = x + B_t$ satisfied with respect to Q , i.e., with respect to W_t .

Solution. Here, we write the expression in terms of differential form:

$$dW_t = dB_t - b(B_t + x) dt.$$

Then, we use the **Girsanov theorem I** to obtain that:

$$M_t = \exp \left(- \int_0^t -b(B_s + x) dB_s - \frac{1}{2} \int_0^t b^2(B_s + x) ds \right).$$

Hence, with the change in measure, we have:

$$d\mathbb{Q}(\omega) = \exp \left(\int_0^T b(B_s + x) dB_s - \frac{1}{2} \int_0^T b^2(B_s + x) ds \right) d\mathbb{P}(\omega).$$

Then, for $Y_t = x + B_t$, we have:

$$dY_t = dB_t = dW_t + b(B_t + x)dt = \boxed{b(Y_t)dt + dW_t}.$$

↓

(b) Let F be an antiderivative of b . Prove that $d\mathbb{Q} = Z_T d\mathbb{P}$ with:

$$Z_t = \exp \left(F(B_t + x) - F(x) - \frac{1}{2} \int_0^t [b'(B_s + x) + b^2(B_s + x)] ds \right).$$

Proof. Note that from (a), we have:

$$\begin{aligned} Z_T &= \exp \left(\int_0^T b(B_s + x) dB_s - \frac{1}{2} \int_0^T b^2(B_s + x) ds \right) \\ &= \exp \left(F(B_T + x) - F(x) - \int_0^T \frac{1}{2} b'(B_s + x) ds - \frac{1}{2} \int_0^T b^2(B_s + x) ds \right) \\ &= \exp \left(F(B_t + x) - F(x) - \frac{1}{2} \int_0^t [b'(B_s + x) + b^2(B_s + x)] ds \right), \end{aligned}$$

as desired. □

(c) Let Y be the solution of:

$$\begin{cases} dY_t = \tanh(Y_t)dt + dW_t, \\ Y_0 = x. \end{cases}$$

Find $\mathbb{E}[e^{\theta Y_t}]$ the Laplace transform of Y_t with respect to \mathbb{P} .

Solution. Here, we immediately notice that this is a great model to define another Brownian motion, namely:

$$\tilde{M}_T = \exp \left(- \int_0^T \tanh(Y_s) dW_s - \frac{1}{2} \int_0^T \tanh^2(Y_s) ds \right).$$

Hence, we have Y_t as a Brownian motion with measure:

$$\begin{aligned} d\mathbb{T} &= \exp \left(- \int_0^T \tanh(Y_s) dW_s - \frac{1}{2} \int_0^T \tanh^2(Y_s) ds \right) d\mathbb{Q} \\ &= \exp \left(- \int_0^T \tanh(Y_s) dW_s - \frac{1}{2} \int_0^T \tanh^2(Y_s) ds + \int_0^T b(B_s + x) dB_s - \frac{1}{2} \int_0^T b^2(B_s + x) ds \right) d\mathbb{P}. \end{aligned}$$

Then, we have the Laplace transformation as:

$$\mathbb{E}_{\mathbb{T}}[\exp(\theta Y_t)] = \exp \left(\frac{1}{2} \theta^2 t \right),$$

and hence, by the change of variable, we have:

$$\begin{aligned}
 & \mathbb{E}_{\mathbb{P}}[\exp(\theta Y_t)] \\
 &= \exp\left(\frac{1}{2}\theta^2 t - \int_0^T \tanh(Y_s) dW_s - \frac{1}{2} \int_0^T \tanh^2(Y_s) ds + \int_0^T b(B_s + x) dB_s - \frac{1}{2} \int_0^T b^2(B_s + x) ds\right) \\
 &= \boxed{\exp\left(\frac{1}{2}\theta^2 t - \int_0^T \tanh(Y_s) dB_s - \frac{1}{2}\theta^2 t - \int_0^T \tanh(Y_s) b(B_t + x) dt\right.} \\
 & \quad \left. - \frac{1}{2} \int_0^T \tanh^2(Y_s) ds + \int_0^T b(B_s + x) dB_s - \frac{1}{2} \int_0^T b^2(B_s + x) ds\right)}.
 \end{aligned}$$

□