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Abstract

We introduce an adaptive coefficient learning strategy for the non-parametric estima-
tion of the radial interaction kernels in interacting particle systems (IPS), which can be
modeled by stochastic differential equations (SDEs). These systems are fundamental
in various physical and biological fields, where we typically don’t know the underly-
ing interactive system. Here, we demonstrate the approach with Lennard-Jones kernel
on particle system simulation, and the unknown kernel is projected onto orthogonal
basis functions, with coefficients initially estimated using a Least Squares Estimator
(LSE). Our adaptive learning procedure refines the basis by strategically eliminating
less significant coefficients, optimizing selection for more influential basis functions.
We present numerical results from 2D simulations, demonstrating the efficacy of this
kernel learning approach and discussing its performance with various basis sets.

Introduction

The goal is to learn the interacting kernel function inside a system.
Interacting Particle Systems (IPS)
The key characterization of IPS is that the motion of each particle is influenced by its in-

teraction with other particles, which can be described by a kernel function K : R — R,
which often radial, denoted ¢ : R™ — R. [3]

With kernel as ¢, the particle system of the motion of the N particles X(t) = { X;(t) }..;
can be thought of as a stochastic ditfferential equation:
dX(t) = Ry|X(t)|dt + ydB(t),
where B(t) := (Bj(t),---,Bn(t)) is a N-dimensional ii.d. Brownian motion, and
Ry[X(t)] is the sum of all the forces:
1 X; — X]
Ryp| X|; = — d(X;, X;
qb[ ]z N;QD( ( i ]))’Xi_xj‘
where 7 is the strength of the noise (assume to be a constant).
Lennard Jones Interaction

Physically, one of the most well known interaction kernel is the Lennard Jones kernel.

fori € [N],

Let two particles at x,y € RY, with distance ¥ = ||x — y||4, their Lennard Jones inter-
action force is computed as:
o\ 6 o\ 12
F(r) =24e | (5)" - (9) ]
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where € is scaling factor and ¢ is the equilibrium distance. [2]

Note that the potential can become very large for small r. We apply a cutoff (F.yioff) for
numerical stability. Specifically:

F(x,y) = max { Feutot, Min{F, —Feutofe } },
which can be visualized as follows:
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Graph of the Lennard Jones Force with distances between x and y.
Basis in L?([0,27])

A key motivation of the learning procedure is based on L?([0,27]) as a Hilbert space
of functions. Hence, we can think of the bases:

e Fourier Basis: Consider {exp(inx) },c, which is equivalently:

{1} U {sin(nx),cos(nx)},"_;.
* Legendre Basis: Apply the Gram Schmidt process (without normalization) for the
polynomial basis {1, x, X2, oo x" . b

e Characteristic Basis: Consider a partition of the |0,27] interval into n pieces
I, -, I, with sharing endpoints of {1j,(x),-- - ,1, (x)} where:

- {2(k— )7 zm}

, fork=1,2,--- ,n.
n n

Methods

The primary goal to estimate the unknown interaction kernel from the observed trajec-
tories of the particle system in following steps:
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1. Basis Expansion: Assume the kernel can be approximated by a linear combination
of M chosen basis functions {y;(r)}1,, i.e.

M
pm(r) = Y cxpe(r),
k=1
turning the task into estimating ¢ = (c1,-- -, cpm)T-

2. Simulation: Simulate the trajectories by the given law and noise to obtain sets of
discrete-time observations for particle positions.

3. Least Squares Formulation: Estimated c;’s by minimizing a least-squares objective
function, which often leads to a linear system of equations Ac = b, based on the
expectations involving the basis functions and the observed dynamics:
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R 1 N L
£ = 2 2 Ry [Xtli, Yi(t)) ga,
NL ==
where N is the total number of particles, L is the total number of sampled time in-
stances, Xt]. denotes the location configuration of all particles at time L, and Y;(t) is

the observed interaction-driven velocity component for particle 7 at time ¢.

We aim to obtain an estimated kernel ¢p(r) = Yo, & (r) that accurately approx-
imates the true kernel ¢(r) During which we apply adaptations such as mixed basis
and learning basis that abandons certain insignificant functions from the basis leaving
space for more basis functions.

Criterion on Goodness of Fit

Based on the SDE, we can apply Girsanov Theorem [1] to define Q as another proba-
bility measure such that Radon—-Nikodym derivative is:

aQ 1 p 1 /1, g

ap = OXP [— ; ;R¢[X(s)] B(s) ~3/, ﬁRQD[X(S)] s] .
Therefore, the Kullback-Leibler divergence (KILID) using the change of measure for-
mula is:

KLD(Q | P) = Eq |3 [ SR3[X(s))ds]

Eventually, we consider the trajectories, and obtain that:

1 M | T/At] ,
Em =Y. N IIRg[X(nAt)] = Y(nist)|?At
m=1 n=0

In particular, we think about the above as the approximation of the error especially
when the ground truth is unknown. When we know the ground truth, we can think

about the L? norm of the difference of the approximation and truth.

Results

We elaborate on the qualitative and quantitative observations during the scope of the
experiment.

Simulation Stage

The SDE was discretized using the Euler-Maruyama scheme [3]:

Xn(tj+1) — Xn(t]) -+ R¢[X(t])]nAt + YV AtZ;,
The simulation results lie as follows:

Particle Trajectories

Particle Trajectories
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Sample paths and distance distributions of particles in a simulated system with parameterse =1, 0 =1,
Feutotf = 5, N = 30, T = 20, and At = 0.05.
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Estimation with 11 Basis
With the system, we used 11 basis for a sigle basis class, as follows:

Interaction Kernel Estimation Interaction Kernel Estimation Interaction Kernel Estimation

= = Estimated Kernel (qﬁ)

Estimated Kernel (qﬁ) [
= True Kernel (LJ Force)

e Magnitude F(r)

Four;er Legen(;re Charac’zZ;e{;tic
Loss: 2.242197 Loss: 1.913352 Loss: 1.644453
Adaptative Methods
Mixed Basis Adaptive Basis Basis results:
A = e " =emwee Here are the remaining bases

R left from each class of the
‘ “ mixed bases:
] Type Remainders
_______ i A AN | Fourier [1,2,3,4,5
: : Legendre [1,2,34,5]
T Char. [1]
Loss: 0.465331

Loss: 0.828474
Discussion

For the simulation, we can observe certain remarks on it:

e The distribution of the distances between points has a large peak around d(x,y) = 1
since it an equilibrium between a pair of the points. There would be a smaller peak
around the distance of 2 and gradually become less popular getting to two ends.

e An issue with the simulation is that it can only be done in terms of discrete time
steps, not continuous time, so there were cases when the points suddenly got closer
and exploded in terms of repulsion. We could only minimize the step size.

* One shall anticipate some sort of clustering in general, but with ¢ = 1 and all the
points were not very spread out initially, the pattern is not very obvious. We shall
test out more specific spread out parameters to check in future.

For the fitting, we shall initially observe that both bases have made a good attempt to
correspond to the true kernel graphically. In particularity, the Lennard Jones force is
exhibiting very bad shape, hence this set of basis is providing a relatively good result.
Another note is that the learning itself is impacted by the noise:

* Recall that the SDE contains the noise part, the kernel was still relatively accurately
captured, which was an indication that the model is relatively working well.

e From the result, we can see that the mixed basis exhibits a relatively good result, and
the adaptive basis effectively truncated certain bases that are not efficient.

 For the LSE, we may also attempt to use Tamed LSE idea in [3], since Tamed LSE can
address for the condition when the matrix in the LSE stage is ill-posed.

In terms of improvements, we can also anticipate to implement more:

e Since we have already lifted the normality, we can potentially lift some conditions
with orthogonality by having some mixed basis to learn the model, as we want to
achieve higher accuracy level.

e Given that the assumption here is that the noise is constant, the system could be
extended to a more general one, i.e., we may use y(X(t)) instead of a constant 1.

In general, this approach of learning kernel exhibits high potentials of learning various
different systems, and could come out to be effective especially when we consider the
kernel as interactions in actual physical models. It is a direct application of stochastic
differential equations to systems that interact with radial kernels.
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