
Improvement on the Precision of QR Factorization
An Analysis on the Fractional Implementation
James Guo, Tina Shen, and Anna Dai
Johns Hopkins University

Contact Information:
Department of Mathematics,
Department of Applied Mathematics and Statistics
Email: {sguo45,xshen43,ndai3}@jhu.edu

Abstract

QR factorization is a fundamental algorithm in the field of
computational mathematics, whose applications are among
solving linear systems, eigenvalue problems, and linear re-
gression. The current computations using classical and modi-
fied Gram-Schmidt algorithms are susceptible to floating-point
errors, and could lead to catastrophic cancellation. Our project
investigates a Q-based fractional computation model to re-
duce roundoff errors, explores alternatives around certain is-
sues, and analyzes the trade-off between computational com-
plexity and numerical precision. Results show Fractional QR
in applications achieves better and arbitrary numerical preci-
sion compared to traditional QR factorization methods.

Introduction
The main concern is to address the QR factorization in the
background of machine representation.

QR Factorization
Let A ∈ Rn×n be a matrix, its QR factorization factors A into
A = QR, where Q ∈ Rn×n is orthogonal (i.e., Q⊺Q = I) and
R ∈ Rn×n is upper triangular. Meanwhile, A does not need
to be square matrix, and can be consisted of C entries, and it
is a trivial extension.

Machine Representation

Since R is uncountable, and the machine can at most rep-
resent a countable set of numbers, so the real numbers can-
not be fully represented. The current machine standard uses
IEEE standards:
• For single precision, there are 32 bits (or 8 bytes).

1 sign bit #e 8 exponent bits #f 23 mantissa bits

• For double precision, there are 64 bits (or 8 bytes).

1 sign bit #e 11 exponent bits #f 52 mantissa bits

With double precision, the smallest positive machine repre-
sentable number (MRN) is 2−127, and the ϵmachine is 2−52.

Catastrophic Cancellation

When subtraction were between two close, large numbers re-
sult in precision loss for the differences.

Background
The typical algorithm for the QR factorization is the Gram
Schmidt algorithm, decomposing V into Q · R, and the clas-
sical and modified versions differ in error bound.

Classical:
• for j← 1, · · · , n:

– Let vj ← aj.
– for i← 1, · · · , j− 1:

* ri,j ← q⊺i aj.
* vj ← vj− ri,jqi.

– rj,j ← ∥vj∥2.
– qj ← vj/rj,j.

Modified:
• for i← 1, · · · , n:

– Let vi ← ai.
• for i← 1, · · · , n:

– ri,i ← ∥vi∥2.
– qi ← vi/ri,i
– for j← i + 1, · · · , n:

* ri,j ← q⊺i vj.
* vj ← vj− ri,jqi

For the classical version, the lower bound if
√

ϵmachine, and
for the modified version, the lower bound is ϵmachine.

Methods
The motivation of our project is to use a fractional represen-
tation for matrix operations. Since Q is countable and dense
in R (Q[i] lattice is dense in C), so it is (theoretically) repre-
sentable, so we can ensure entry-wise completeness for ma-
trix multiplications.

Newton’s Method
Note that Q is not closed under square root operator, so we
decided to go around using Newton’s method, which con-
verges to the square root result.

Precision and Complexity Trade-off
When integers are large, we account for the large cost of ad-
ditions and multiplications outside asymptotic behavior.

Results
For the experiment, we compare the following modes:
• Classical Gram-Schmidt algorithm.
• Improved Gram-Schmidt algorithm.

• Fractional QR with ϵ = 2−64.
• Fractional QR with ϵ = 2−256.

During the testing, we initialized a diagonal matrices with
dyadic entries, compose it with a orthogonal matrix, and at-
tempt to use QR factorization to retrieve the original dyadic
numbers.

• We achieved a very good result when the result is larger
than

√
ϵ and a reasonable result with some deviation when

the result is larger than ϵ.

Discussion
Our implementation, although having higher precision, costs
much more time than the traditional methods. This is ex-
pected, as the additions and multiplications are more com-
plicated.
When thinking about our Fraction QR implementation with
ϵ = 2−256, each addition is about 256 times of single bit addi-
tion, and each multiplication is about 6561 times of single bit
addition. When doing the fractional field operation, each ad-
dition is composed of three integer multiplications and one
integer addition, and each multiplication is composed of two
multiplications. Hence, the operation is about 25 to 383 times
slower than the floating-point operation. Hence, each addi-
tion and multiplication is about 25 to 383 times slower than
the floating point operation.
The Fractional adaption of the algorithms is not only limited
to QR factorization, and we can apply it to a wider class of al-
gorithms: when we need precision, for some computations,
there is no room for deviation, we shall consider it.

References
[1] David Bau III Lloyd N. Trefethen. Numerical Linear Alge-

bra.


