Improvement on the Precision of QR Factorization

James Guo, Tina Shen, and Anna Dai

Johns Hopkins University

March 30, 2025

Supervisor: Dr. Mario Micheli

Table of Contents

© Preliminaries
© Improvement on QR Factorization

© Analysis on Fractional Improvement

We will start from the basic background and motivations, and gradually
move into the motivation of our project and its analyses.

Preliminaries

@ QR Factorization
@ Machine Representation

@ Issues with Machine Representation

@ Catastrophic Cancellation

@ Current Work

QR Factorization

QR factorization is an important algorithm in computational mathematics.

QR Factorization
Let A € R"™" be a matrix, its QR factorization factors A into:

A= QR,
where @ € R"" is orthogonal (i.e., QTQ = /) and R € R"*" is upper
triangular.

@ Note that A does not need to square matrix, but having it as a square
matrix could be helpful to present various applications.

@ Also note that the field does not have to be R, it can be any field,
such as C.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 4/31

Machine Representation

Theoretically, the QR factorization is precise when computed by hand, but
this becomes a problem when the computation is on a computer.

@ It is notable that R is uncountable, and the machine can at most
represent a countable set of numbers, so the real numbers cannot be
fully represented by machine.

@ The current machine standard uses the |IEEE standards.

IEEE Representation Standard

For single precision, there are 32 bits (or 4 bytes).

] 1 sign bit \ #e 8 exponent bits \ #f 23 mantissa bits ‘

For double precision, there are 64 bits (or 8 bytes).

] 1 sign bit \ #e 11 exponent bits \ #f 52 mantissa bits ‘

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 5/31

Machine Representation (Continued)

For the sake of the presentation, we consider the double precision.

’ 1 sign bit \ #e 11 exponent bits \ #f 52 mantissa bits ‘

The sign bit is intuitive, either positive (technically nonnegative) or
negative, and the exponential represents the power of 2 subtracted by 127,
and the mantissa were the numbers, represented by:

:l:(#f)(#e)_127.

Example of Single Precision Float
Consider the number stored as:

1 sign bit | #e 11 exponent bits | #f 52 mantissa bits
+ 00000111111 000- - - 0001

This number has the exponent as 127 and the mantissa as 1, so it is:
11 x QL7127 _ g

v

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 6/31

Issues with Machine Representation

Note that with this representation, the smallest positive representable
number is:

1 sign bit | #e 11 exponent bits | #f 52 mantissa bits
+ 00000000000 000- - - 0001

This number is then:
+1 % 2—127 — 2—127.

Hence the machine will be unable to present a number like 2712 precisely.

@ Note that there is also a upper bound with the machine representable
number of floating point, but we will not discuss that yet.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 7/31

Issues with Machine Representation (Continued)

In the realm of computational mathematics, there is a definition on
machine representable numbers (MRN) as the numbers that can be
expressed as above, and there is a consequence as the machine epsilon.

Machine Epsilon

The machine epsilon (€machine) is defined as the distance between 1 and
the next larger MRN.

For our single precision floating point number, the next larger number
than 1 is:

1 sign bit | #e 11 exponent bits | #f 52 mantissa bits
+ 00001001100 100- - - 0001

Hence, we have:

—52
€machine = 2 .

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 8/31

Catastrophic Cancellation

The machine representation could cause problems, and the most major one
of them is the catastrophic cancellation.

Catastrophic Cancellation

Catastrophic cancellation occurs when subtraction between two close,
large numbers result in precision loss for the differences.

To better illustrate, we give an example in python.

» dev = 0.12

» x =2 xx 50 + 0.0
» y = 2 %k 50 + dev
»y - x

0.0

This is especially an issue when we attempt to divide something by the
difference y — x later on.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 9/31

Gram Schmidt Algorithm and Modified Gram Schmidt

The typical algorithm for the QR factorization is the Gram Schmidt
algorithm, decomposing V into Q - R.

Classical Gram-Schmidt Modified Gram-Schmidt
Algorithm Algorithm
oforj«1,---,nm o fori«+1,---,n
o Let vj + aj. o Let v; + a;.
oforic=1,.--.j—1L ofori<1,--- n:
° rij<qla.
® Vi< Vj— riq; ° ri’i<_HVfH2'
7 ° gj < Vf/ff,f
o rjj < [lvjll2 o forj«i+1,--- n

° qj < vi/1jj o rij—qly
@ Vi<V~ 1 qi
The smallest representable result The smallest representable result

IS/ €machine- is €machine-

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 10/31

Applications Requiring Exact or High-Precision QR
Factorization

o Computational Geometry: requires consistent decisions about
incidence and intersection, such as in determining linear independence
of vectors without floating-point error.

@ Control Theory: exact rational QR eliminates false unstable cases or
missed unstable poles due to numerical rounding (in filter design, for
example).

e Optimization: solvers for linear/quadratic programs and certain
iterative methods benefit from rational QR to correctly identify
constraint activations or dependencies.

o Scientific Computing: computational biology or astronomy needs to
solve a regression or alignment problem to very high precision.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 11/31

Improvement on QR Factorization

@ Fractional Representation

@ Implementation Choices

@ Newton's Method

@ Evaluation on Implementation

@ Results on Implementation

Fractional Representation

The motivation of our project is to use a fractional representation for
matrix operations, noting some properties of rational numbers:

e Q is countable, so it is (theoretically) representable.

e Q is dense in R, and technically the Q[i] lattice is dense in C.

e We can ensure entry-wise completeness for matrix multiplications.

Remark on Python Language

In the python language, the programming language has not casted an
explicit upper bound for the largest integer.

@ We utilize this property to represent all numbers in terms of rationals.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 13 /31

Fractional Representation (Continued)

We can think any two number being represented (or approximated) as
a=%and B =5, where a,c €Z and b,d € 77, and the basic operations
would be similar of how it was done in a fractional field.

@ Addition and subtraction:

axdxbxc
:l: —
aEp bxd
@ Multiplication:

ox = axb
cxd

@ Division, when 3 # 0:
a;ﬂ—aXd
T bxc

If we assume addition and multiplication of constant time, the time
complexity is asymptotically the same.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 14 /31

Fractional Representation (Continued)

Fraction Class in Python

Luckily python library has a class of Fraction, so there are also functions
such as taking integer powers or simplify function to automatically
simplify the fractions through the implementation process.

The main idea for this project is to implement the Gram-Schmidt
algorithm on QR factorization using the Fraction class.

Issues with Pure Fraction Class Conversion

The implementation may seems trivial, but there are some issues with the
Fraction class:

@ Q is not closed under square root.

@ The addition and multiplication of large integers is not constant time.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 15 /31

Newton's Method

Q is not closed under square root operator.

@ Technically, we might could extend the field each time with a new
variable for the square roots, quadruple roots, -- -, such as:

QIV2,V3,V5, VT, -][V2,-]--- .
However, this will be very complicated: Each extension (of 2%-th root
of prime) could be thought of as a variable (Galois Theory), and we
also need to handle the interactions of the terms.

The method we decided to go around is to use Newton’s method, in
which we can turn the square root operator as an equivalent problem.

Equivalence of Square Root

Let a € Q be arbitrary, finding the square root of « is equivalent to

finding the positive root of the function f(x) = x? — a.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 16 /31

Newton’'s Method (Continued)

Even better, consider that the function is convex, and as long as we start
as a positive value, we will be able to get towards the actual value of \/a:

o Initialize x = a.
@ while within the maximum iteration:
o Compute step as step = (x2 — a) + (2 x x).
e Update x by subtracting the step, and if the step is less than the
desired precision, break the loop.

Here, we enforced an desired precision for Newton's method so it will

terminate when the result is good enough.
Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025

17/31

Precision and Trade-off

Another thing we need to care about is how complex the algorithm is.

@ An assumption of most complexity analysis is that all operations + or
X are of constant time.

However, this is not true.

Example of Calculation Complexity

Consider the following two examples of multiplications:
12 x 11 =7
2,147,483,648 x 4,398,046,511,104 =7

It should be clear that the second multiplication should be slower in
general when the integers are too big.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 18 /31

Precision and Trade-off (Continued)

It is not a valid assumption to treat multiplication and addition as the
same time when our integers are very large.

@ We will analyze the complexity in detail when we analyze the
complexity of the algorithm, but here, we can tell that the precision is
together with a trade-off with time complexity.

To prevent the algorithm being too complicated, we decided to retrieve

our desired precision (as dyadic number) in Newton’s Method, and use
that to prevent explosion of numerators and denominators.

@ Given a fraction g.

o while g >the denominator of the dyadic desired precision:

e if p = =£1, end the simplify procedure.
o Divide p and g both by 2 (truncate a bit).

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 19 /31

Testing Strategy

For our improved QR Factorization using Fractions, we have initialized
diagonal matrices with dyadic entries, compose it with a orthogonal
matrix, and attempt to use QR factorization to retrieve the original dyadic
number.

Experiment Procedure

What we aimed to compare are the following models:

Classical Gram Schmidt algorithm.
Improved Gram Schmidt algorithm.
Fractional QR algorithm with ¢ = 274,
Fractional QR algorithm with ¢ = 27256,

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 20/31

Results on Implementation

. Results of Different QR Factorization
_204 . 3y "atee 00,00 0
40 1
) ‘-._-..,-—‘,-....'-,.-.._'.‘:u 000 ot
g —60
o ot —— o
=
§
o g4
=)
ol
=~
~100 .,
.
i .,
Fractional QR (¢ = 2-01) \
—120 4 Fractional QR (¢ = 272%)
e .
= €machine
~140 - “a
9128 .,
0 2'(] 'lv(\ !i:! HIU l(;(? 12‘[] 140
Original Value (27/)
Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025

21/31

Detailed Results on Fractional QR with ¢ = 2764

Results of QR Factorization for Fractional Method for ¢ = 2=

X Fractional QR (¢ = 27%)

100

—120

140

0 2 0) 0 100 120 10
Original Value (277)

@ High precision when within 2732 deviations between 2732 and 2764,
and intractable error after 2764,

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 22/31

Detailed Results on Fractional QR with ¢ = 22

Results of QR Factorization for Fractional Method for e = 27296

0
%,)
S
X
» B
—20)y’(/x
£
4,
.
S
0
>
5
5
& 60 y"/f,y
%4,
.
S
0 ’&&%
™
e
%4
k>
S
5
%%,
e
1o -
0 n o ® % 100 2 B
Original Value (277)

e High precision when within 27128 deviations after 27128

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 23 /31

Analysis on Fractional Improvement

o Time Complexity

@ Remark on Newton's Method
@ Precision

@ Extensions

Worst Time Complexity on Integer Operations

Here, we think about addition and multiplication between two integers of
k bits.
@ It can be proven that the best runtime of adding/subtraction two
integers of k bits will be ©(k).
@ For the multiplication algorithm, by using the Karatsuba trick, the
multiplication of two integers of k bits will be ©(k'°g2(3)).

Operation time in Double Precision Float

If we assume the operations in double precision float, k = 52:
@ Each addition is about 52 times of single bit addition.

@ Each multiplication is about 525 times of single bit addition.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 25/31

Worst Time Complexity on Integer Operations
(Continuous)

Then, we think about our Fraction QR implementation with € = 2256
@ Each addition is about 256 times of single bit addition.
@ Each multiplication is about 6561 times of single bit addition.

Then we need to think about the fractional field operation:

Operation time in Fractional Field

@ Each addition is composed of three integer multiplications and one
integer addition, so it is about 19939 multiples of single bit addition.

@ Each multiplication is composed of two multiplications, so it is about
13122 multiples of single bit addition.

Hence, each addition and multiplication is about 25 to 383 times slower
than the floating point operation.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 26 /31

Worst Time Complexity on Integer Operations
(Continuous)

Even if we have € = 2752, which is exactly the machine epsilon, the
multiplication time of the fraction class is about 2 times slower, and the
addition time of the fraction class is about 31 times slower.

The Operation could be more Complicated

Note that the previous arguments are just rough estimates, since:

@ There are simplify for the Fraction class that could be making the
fractions into more simplified form.

@ At the same time, when simplified, the computation of integer
addition and multiplication would not reach the worst case.

@ There are truncations of digits through the algorithm, but that
runtime should be relatively negligible (as bitwise truncation is fast).

When considering the runtime not as asymptotically runtime, the
algorithm will be significantly slower.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 27 /31

Remark on Newton's Method

Note that the Newton's method is also used for taking the square root
operator, so the major difference will still be the same multiple for the
number of operations.

The computation of square root for floating point also uses the Newton's
method, so the algorithm would be similar for the Fractional QR, with the
same constant multiple slower.

As a side note, for our Newton's method on taking the square roots for
€ = 27250 the algorithm converges to the desired result for taking the
square root of 27290 takes about 100 iterations, so the Newton's method
is relatively efficient.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 28 /31

Precision in Operation

However, the Fractional implementation allows some more flexibility in
precision:

@ We can manually adjust for the degree of preciseness that we want.

@ Recall the graph, we can achieve a very good result when the result is
larger than /e and a reasonable result with some deviation when the
result is larger than e.

e This is because the Fractional representation can represent more
smaller numbers and preserve the precision of the smaller part of the
large numbers, so it effectively avoids the embarrassment of
Catastrophic cancellation.

The trade-off is the slower computational time, for higher precision and
flexibility of how precise we want.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 29/31

Extension of Fractional Algorithms

The Fractional adaption of the algorithms is not only limited to QR
factorization, and we can apply it to a wider class of algorithms.

@ When we need precision, for some computations, there is no room for
deviation.

@ Especially when all the operations are addition, subtraction,
multiplication, and division. This is when all the operations are closed

in Q or QJi].

The Fractional algorithm is most valuable when certain level of precision is
required. When precision is not that important, or when we want some
randomness generated by noises, the floating-point operations still have its
own advantages.

Guo, Shen, and Dai (JHU) [MATRX 2025] Improve QR Factorization March 30, 2025 30/31

End of the Talk

We are open to some questions about this project.

Thank you for listening.

	Preliminaries
	QR Factorization
	Machine Representation
	Issues with Machine Representation
	Current Work

	Improvement on QR Factorization
	Fractional Representation
	Implementation Choices
	Evaluation on Implementation

	Analysis on Fractional Improvement
	Time Complexity
	Precision
	Extensions

